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Abstract. We consider an incomplete market and suggest a self-financing
time continuous investment strategy consisting of a risk-free asset (bond),

a risky asset, and a financial derivative whose value moves inversely to
that of the risky asset. We optimize the wealth process by introducing a

parametric convex utility function that simultaneously maximizes wealth

and minimizes the mean square of it. Using the HJB equation, we com-
pute precisely the optimal portfolio process, where notably, a range of

processes can optimize the problem. This advantage enables investors to

gain fringe benefits while maintaining their overall investment strategy by
adjusting their portfolios accordingly. As an application of the results, we

optimize a portfolio process with a European put as the derivative and

compute the corresponding optimal wealth numerically. Additionally, we
will outline a method to calculate the market return rate and the mar-

tingale parameter, which are necessary for optimization.
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mization, HJB equation.
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1. Introduction

In financial mathematics, investment strategies and portfolio optimization
are two critical areas of study that seek to maximize returns while minimizing
risks. Investors are constantly faced with the challenge of allocating their assets
wisely according to market dynamics oriented by interactions between various
financial elements such as bonds, risky assets, derivative securities and etc.
This task becomes even more complicated when one considers the competing
interests of risk aversion and the desire for high returns.

Investors have always found simultaneous investment in risk-free and risky
markets intriguing, leading to numerous studies on optimizing such investments
using various mathematical models. These studies often explore the delicate
balance between securing stable returns through risk-free assets and pursuing
higher potential gains afforded by volatile stocks or alternative investments.
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Previous leading studies (see for example [1,7,8,13,14] and references therein),
have been continued by recent research on simultaneous investment optimiza-
tion across parallel markets to achieve an optimal stock portfolio. In two very
fundamental researches [9] and [20] (see also [10]), the authors proposed a gen-
eral time continuous portfolio selection model and carried out an analytical
approach to the optimal utility. Later in [4], the author considered a time
continuous portfolio consisting of one risk-less asset and a group of risky assets
and used a mean variance minimization problem to a discretized model for
optimizing the wealth process. The same purpose followed in [19], where the
author considered a portfolio consisting of one risk-free asset (bond) and one
risky asset (stock) and optimized the portfolio by maximizing a utility function
of Von Neumann–Morgenstern type. A different study was completed in [17],
where the author inserts the factor of investors age into the investment strate-
gies. In another study [6], the authors demonstrated that by discretizing a
portfolio model influenced by a Lévy process, optimization problems involving
price changes with jumps can be effectively addressed using equivalent jump-
free models. In [5], the authors combined a Markov decision process and a
Reinforcement Learning method for dynamic portfolio optimization with risk
assessment. The same idea was followed by [18], where the authors used a Re-
inforcement Learning method along with Hamilton-Jacobi-Bellman equations
(in brief, HJB equation) to optimize a portfolio process. Artificial intelligence
tools have recently attracted researchers’ interest for portfolio optimization [11].
While AI-based methods remain largely theoretical, the potential for imple-
menting and evaluating advanced algorithms using these tools is significant.

The optimization of the portfolio process is still among the researchers’ con-
cerns, and several methods have been used by researchers for this purpose.
Many of these studies are focused on minimizing the investment risk by im-
plementing well-known mathematical tools such as mean square minimization
methods, HJB equations, optimal filtering of the over/under-reaction and etc. .
The relevant papers are numerously available; and interested readers can refer
to works such as [2, 3, 12,21] and their citations.

In this paper, we will consider an incomplete market and propose a portfo-
lio process consisting of a risk-free asset (bond), a risky asset, and a financial
derivative based on the risky asset but its value moves inversely to that of
the risky asset. Such a portfolio is called in brief a BAD-portfolio (abbrevi-
ated of Bond-Asset-Derivative portfolio). As we will demonstrate, the fact that
the values of the asset and the derivative move in opposite directions allows
investors to effectively manage financial risk by adjusting their holdings be-
tween the bond, the risky asset, and the derivative. The paper is organized
as follows. In the next section, we will detail the BAD-portfolio process and
calculate the corresponding discounted wealth process. Additionally, we will
present the optimization problem as the minimization of a parametric convex
utility function that can simultaneously maximize wealth and minimize mean
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square of it. In Section 3, we will compute the equivalent martingale prob-
abilities and reformulate the discounted wealth process and the optimization
problem with respect to these new probabilities. In Section 4, we will calculate
the corresponding HJB equation and precisely compute the optimal portfolio
process. Notably, a range of processes can optimize the problem (see Theorem
4.1 and (22)), which is advantageous because it enables investors to gain fringe
benefits while maintaining their overall investment strategy by adjusting their
portfolios accordingly in real-world applications. In Section 5, we will consider
an asset value chart and construct a BAD-portfolio process with a European
put option as the derivative. We will compute the optimal portfolio process
and the corresponding wealth process numerically. Additionally, we will out-
line a method to calculate the market return rate and a martingale parameter
necessary for determining the optimal portfolio process in Section 4.

2. Mathematical Model, Financial Assumptions and Con-
cepts.

Throughout this paper, we assume (Ω,F ,P) is a complete probability space
and b1(t), b2(t) are two independent standard Brownian motions imposing a
filtration Ft, t ≥ 0. For 0 < T ∈ R and n ∈ N, Ln[0, T ] stands for the space of
all adapted and progressively measurable processes Xt such that1

E
(∫ T

0

|Xt|ndt
)
<∞.

We also assume that there exists an underlying risky asset in a frictionless
market whose price at time 0 ≤ t ≤ T is St and is modeled by

(1)
dSt
St

= α(t)dt+ 〈σ(t), db(t)〉,

where σ(t) =
(
σ1(t), σ2(t)

)
, b(t) =

(
b1(t), b2(t)

)
and 〈., .〉 is the inner product

of the vectors. In (1), α(t) ∈ L1[0, T ] and 0 < σ1(t), σ2(t) ∈ L2[0, T ] show
respectively the expected return rate and the volatility rates of the risky asset.
Also, b1(t) simulates the random movements caused by the asset, and b2(t) sim-
ulates the random movements imposed by unconsidered market parts. While
the Black-Scholes model primarily uses b1 for pricing, secondary factors like re-
lated market activity necessitate simulation with additional equations. When
these secondary factors are not the primary focus, many authors simplify these
effects by adding independent Brownian motions, as we do here with b2.

We also consider a bond whose value at each time 0 ≤ t ≤ T is Bt and
modeled by

(2)
dBt
Bt

= r(t)dt,

1E(.) stands for the mathematical expectation.
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where 0 < r(t) ∈ L1[0, T ] is an adapted process which shows the return rate of
the bond.

In what follows, we assume that an agent invests in the market with a
portfolio consisting of a0 shares of the bond, a1 shares of the risky asset, and
a2 shares of a European derivative with maturity T and linked to the underlying
asset St with the payoff Φ(ST ) ≥ 0, where Φ(x) is a decreasing convex function.
We also assume that he neglects the transaction costs; thus, his wealth at each
time 0 ≤ t ≤ T is determined by

Wt = a0(t)Bt + a1(t)St + a2(t)Pt,

where Pt = P (t, St) shows the value of the derivative at time 0 ≤ t ≤ T . As
mentioned, such portfolios are called BAD-portfolios and are widely used to
control investment risks in a risky market. Indeed, with an imprecise expres-
sion, the value of the derivative and risky asset move in the opposite directions
to balance each other to control the investment risk.

Since the agent balances his portfolio at each time 0 ≤ t ≤ T based on the
information up to time t, it is reasonable to assume that ai(t), i = 0, 1, 2, are
adapted processes; and therefore, the wealth process Wt is also an adapted
process. For notational convenience, we let A(t) =

(
a1(t), a2(t)

)
and Xt =(

St, Pt
)
, thus the wealth process above is rewritten in the form:

(3) Wt = a0(t)Bt + 〈A(t), Xt〉.

Definition 2.1. With the above notations, the BAD-portfolio (or equivalently
the wealth process Wt in (3) is called self-financing if the following assumptions
hold.
(A1) a0(t)r(t)Bt ∈ L1[0, T ] and A(t) ∈ A, the set of all adapted processes
with values in R2 such that

1) a1(t)α(t), a1(t)r(t) ∈ L1[0, T ], a1(t)σj(t) ∈ L2[0, T ], (j = 1, 2),

2) a2(t) ∈ L2[0, T ] with sup
0≤t≤T

|a2(t)| < M, almost surely for P.

(A2) The self-financing constraint is satisfied:

dWt = a0(t)dBt + a1(t)dSt + a2(t)dPt

= a0(t)dBt + 〈A(t), dXt〉.(4)

The assumption (A1) ensures that the integral form of the self-financing
constraint (A2) is well-defined. The self-financing constraint (A2) indicates
that the agent manages W (t) by adjusting asset shares at each time 0 ≤ t ≤ T ,
with no external funds required for investment on the time interval 0 ≤ t ≤ T .
This ability to dynamically allocate the shares allows him to efficiently manage
wealth over time, maximizing returns and minimizing risks without the need for
external capital injections (see [16] for financial conventions of the self-financing
constraint).
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In the rest of this paper, for convenience in calculations, we assume B0 = 1
andW0 = 1. This makes our wealth process a numeraire; and the corresponding
discounted processes are

W̃t =
Wt

Bt
, S̃t =

St
Bt
, P̃t =

Pt
Bt
, X̃t =

1

Bt
Xt = (S̃t, P̃t);

and the wealth process (3) becomes

(5) W̃t = a0(t) + 〈A(t), X̃t〉.

Definition 2.2. With the above notations, a self-financing wealth process Wt

is called admissible if
1) W̃t ≥ 0, P-a.s. for all t ∈ [0, T ],

2) E(W̃T ) ≥W0.
The set of all admissible wealth processes is shown by W+. A self-financing

portfolio process A(t) =
(
a1(t), a2(t)

)
∈ A for which W̃t ∈ W+ is called admis-

sible. The set of all admissible portfolio processes is shown by A+.

It must be clear that, for a wealth process Wt and a portfolio process A(t),

a0(t) = W̃t − 〈A(t), X̃t〉.
As we will see soon, we can somehow omit a0(t) in the calculations, thus our
main concern will be on the portfolio process A(t) =

(
a1(t), a2(t)

)
∈ A+. If an

agent begins with an initial wealth W0 = 1 and invests just in the bond, i.e.

A(t) = (0, 0) and a0(t) = 1, then W̃t = 1 is admissible; thus (0, 0) ∈ A+. On
the other hand, it is easy to see that, if A1, A2 ∈ A+ then λA1+(1−λ)A2 ∈ A+

for all 0 ≤ λ ≤ 1; thus A+ is a convex subset of A. Thus we have the following
lemma:

Lemma 2.3. With the above notations, A+ is a non-empty convex set con-
taining the origin.

The challenge of finding an optimal portfolio process is a complicated issue
that can be formulated in various ways depending on the portfolio structure
and the agent’s objective. In this paper, based on the wealth process (3), the
problem is to find a portfolio process that maximizes the expected wealth at
the maturity and minimizes the divergence from this expected wealth at the
same time, i.e.

max
A(t)∈A+

E
(
W̃T

)
, min

A(t)∈A+

E(W̃ 2
T )− E2(W̃T )︸ ︷︷ ︸
=V
(
W̃T

) .

Since, in general, there might not exist a portfolio process A(t) satisfying simul-
taneously both conditions above, we can compromise the optimization problem
to the following form:

V(δ) = min
A(t)∈A+

E
(
δW̃ 2

T +
1− δ
W̃T

)
, 0 ≤ δ ≤ 1.(6)
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In the case of (6), for δ = 1, the optimal problem is a mean square minimization
problem. Such problems appear in many mathematical finance problems (see
for example [4, 7], and references therein). If δ = 0, then Holder‘s inequality
implies that

E
( 1

W̃T

)
≥ 1

E(W̃T )
.

Thus, the process A ∈ A+ which minimizes the left-hand side, relatively
maximizes the expected wealth; or roughly speaking, (6) relatively maximizes

E(W̃T ), for δ = 0. By selecting 0 ≤ δ ≤ 1, we can balance the strategy between
mean-variance minimization and wealth maximization. It’s important to note

that minimizing E(W̃ 2
t ) and maximizing E(W̃t) directly influence variance min-

imization, which can also be seen as risk minimization. In the next section,
we will replace (6) with its alternative form with respect to the martingale
probabilities.

3. Equivalent martingale probabilities

When we talk about an incomplete market, the equivalent martingale prob-
ability measure might not be unique. As we will see in this section, there exists
a family of equivalent martingale probability measures which affect the optimal
problem (6).

Lemma 3.1. The discounted wealth process W̃t follows the self-financing con-
straint

(7) dW̃t = 〈A(t), dX̃t〉.

Proof. Combining the self-financing constraint (A2), the wealth process (3)
and the Itö product rule, we obtain:

Bt da0(t) + 〈dA(t), Xt〉+ 〈dA(t) , dXt〉 = 0,

or equivalently

(8) da0(t) + 〈dA(t), X̃t〉+ 〈dA(t) ,
1

B
dXt〉 = 0.

On the other hand,

dX̃t =
1

Bt
dXt − r(t)X̃tdt ⇒

1

Bt
dXt = dX̃t + r(t)X̃tdt.

Thus, considering 〈dA(t) , r(t)X̃(t)dt〉 = 0, we obtain:

da0(t) + 〈dA(t), X̃t〉+ 〈dA(t) , dX̃t〉 = 0.

Using the last equation, the self-financing constraint (7) is obtained by differ-
entiating both sides of (5). �
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Remark 3.2. Considering (5), a consequence of Lemma 3.1 is

(9) a0(t) = 1 +

∫ t

0

〈A(u), dX̃u〉 − 〈A(t) , X̃t〉.

That is, as soon as we obtain the portfolio process A(t) in (7), we can obtain
a0(t) by (9).

We next turn to derive equivalent martingale probabilities. For beginning,
the market price of risk for the risky asset is given by (see [16, chapter 5]) :

θλ(t) =
(
α(t)− r(t)

)( λ

σ1(t)
,

1− λ
σ2(t)

)
, 0 ≤ λ ≤ 1.

For 0 ≤ λ ≤ 1, let Pλ be the equivalent probability measure with dPλ/dP =
Zλ(T ), where

(10) Zλ(t) = exp
[
−
∫ t

0

〈θλ(u) , db(u)〉 − 1

2

∫ t

0

‖θλ(u)‖2du
]
.

If we further consider the assumptions:
(A3) ‖θλ(t)‖2Z(t) ∈ L2[0, T ], 0≤ λ ≤ 1,

(A4) supλ∈[0,1] E
(

exp
[∫ T

0
‖θλ(u)‖2du

] )
<∞,

then the Girsanov theorem (see [16, Theorem 5.4.1]) implies that, for 0 ≤ λ ≤ 1,
Zλ(t) is a martingale with respect to P and

b̃1λ(t) = λ

∫ t

0

α(u)− r(u)

σ1(u)
du+ b1(t),

b̃2λ(t) = (1− λ)

∫ t

0

α(u)− r(u)

σ2(u)
du+ b2(t),

are independent standard Brownian motions with respect to Pλ. Furthermore,

(11)
dS̃t

S̃t
= 〈σ(t), db̃λ(t)〉, b̃λ(t) =

(
b̃1λ(t), b̃2λ(t)

)
=

∫ t

0

θλ(u)du+ b(t),

which implies that S̃t is a martingale with respect to Pλ, (0 ≤ λ ≤ 1), and from
the no arbitrage option pricing formula, we have

Pt = BtEλ
(Φ(ST )

BT

∣∣∣Ft),
where Eλ denotes the mathematical expectation with respect to Pλ.2

Lemma 3.3. With the above notations, the discounted wealth process W̃t is a
martingale with respect to Pλ.

2While some studies minimize the derivative prices by finding the appropriate λ, this is
not the focus here for two reasons. First, our aim is portfolio optimization, not derivative

pricing. Second, and more importantly, here as we will see later in Eq. (16), the derivative

price is independent of λ.
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Proof. Let 0 ≤ s ≤ t ≤ T . We first show that P̃t is a martingale:

Eλ
(
P̃t

∣∣∣Fs) = Eλ
[
Eλ
(Φ(ST )

BT

∣∣∣Ft)∣∣∣Fs]
(using the iterated conditioning rule) = Eλ

[Φ(ST )

BT

∣∣∣Fs] =
Ps
Bs

= P̃s.

Now, from the martingale representation theorem (see [16, Theorem 5.4.2]),
there exists an adapted process Γ(t) such that

P̃t = P̃0 +

∫ t

0

〈Γ(u), db̃λ(u)〉.

Substituting the above equality in the self-financing constraint (7), we obtain

dW̃t = a1(t)S̃t〈σ(t), db̃λ(t)〉+ a2〈Γ(t), db̃λ(t)〉.

This shows that W̃t is an Itö integral with respect to b̃λ(t) and therefore is a
martingale with respect to Pλ. �

Lemma 3.4. Let 0 ≤ s ≤ t ≤ T . With the above notations, we have

E
(
W̃t

∣∣∣Fs) = Eλ
( W̃t

Zλ(t)

∣∣∣Fs), P almost surely.(12)

E
(
W̃tZλ(t)

∣∣∣Fs) = Eλ
(
W̃t

∣∣∣Fs), P almost surely.(13)

Proof. We prove (12), the proof of (13) is quite similar. Let 0 ≤ s ≤ t ≤ T ,
U ∈ Fs ⊆ Ft and IU be the characteristic function of U . As Zλ(t) is a
martingale with respect to P, by the iterated conditioning property of the
conditional expectation, we have:

Eλ
( IUW̃t

Zλ(t)

)
= E

( IUW̃t

Zλ(t)
Zλ(T )

)
= E

(
E
( IUW̃t

Zλ(t)
Zλ(T )

∣∣∣Ft))
= E

( IUW̃t

Zλ(t)
E
(
Zλ(T )

∣∣∣Ft)) = E
(
IUW̃t

)
.(14)

On the other hand, from the partial averaging property of the conditional
expectation we have∫

U

E
(
W̃t

∣∣∣Fs)dP =

∫
U

W̃tdP = E
(
IUW̃t

)
( from (14) ) = Eλ

( IUW̃t

Zλ(t)

)
=

∫
U

W̃t

Zλ(t)
dPλ

=

∫
U

Eλ
( W̃t

Zλ(t)

∣∣∣Fs)dPλ.
Since the above equality holds for all U ∈ Fs, so (12) holds. �
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Given the simplicity of calculations provided by martingale property, we
rewrite the optimization problem (6) with respect to the martingale probability
measures Pλ; thus we have:

V(δ) = min
A∈A+

Eλ
( δW̃T

Zλ(T )
+

1− δ
Zλ(T )W̃ 2

T

)
, 0 ≤ δ ≤ 1.(15)

In the next section, we will derive a family of optimal portfolio processes by
constructing the corresponding HJB equation for the above optimal problem.

4. Optimum portfolio process

In this section, we will consider (7) and present enough conditions for the
portfolio processes A(t) ∈ A+ satisfying (6) (or respectively (15)). To this end,
we first consider the optimal problem V(δ) in (6) (or equivalently (15)). The

Markov property of S̃t and the risk neutral pricing formula

P̃t =
1

BT
Eλ
(

Φ(ST )|Ft
)

= Eλ
(Φ(BT S̃T

)
BT

|Ft
)

imply that P̃t is a function of (t, S̃t); hence, the Itö formula implies:

dP̃t =
(∂P̃t
∂t

+
1

2
‖σ(t)‖2S̃2

t

∂2P̃t

∂S̃2
t

)
dt+

∂P̃t

∂S̃t
dS̃t.

Substituting this equation into (7), we obtain

dW̃t =
(
a1(t) + a2(t)

∂P̃t

∂S̃t

)
dS̃t + a2(t)

(∂P̃t
∂t

+
1

2
‖σ(t)‖2S̃2

t

∂2P̃t

∂S̃2
t

)
dt.

Finally, the Feynman-Kac theorem (see [16, Theorem 6.4.1]) implies that P̃t =

P̃ (t, x) is the solution of the boundary value problem:

(16)
∂P̃t
∂t

+
1

2
‖σ(t)‖2x2 ∂

2P̃t
∂x2

= 0, P̃ (T, x) =
Φ(B(T )x)

B(T )
.

Thus, we have

dW̃t =
(
a1(t) + a2(t)

∂P̃

∂x
(t, S̃t)

)
dS̃t

=
(
a1(t) + a2(t)

∂P̃

∂x
(t, S̃t)

)
S̃t〈σ(t), db̃λ(t)〉.(17)

Considering (10) and (11), we can replace b(t) with b̃λ(t), and find

Zλ(t) = exp
(1

2

∫ t

0

‖θλ(u)‖2du−
∫ t

0

〈θλ(u) , db̃λ(u)〉
)
.
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Thus, by Ito’s formula,

dZλ(t) =
1

2
‖θλ(t)‖2Zλ(t)dt− 〈θλ(t), b̃λ(t)〉Zλ(t)

+
1

2
〈θλ(t), b̃λ(t)〉〈θλ(t), b̃λ(t)〉Zλ(t)

= Zλ(t)
(
‖θλ(t)‖2dt− 〈θλ(t), db̃λ(t)〉

)
.

Now, we consider the system of equations

(18)

 dW̃t =
(
a1(t) + a2(t)∂P̃∂x (t, S̃t)

)
S̃t〈σ(t), db̃λ(t)〉,

dZλ(t) = Zλ(t)
(
‖θλ(t)‖2dt− 〈θλ(t), db̃λ(t)〉

)
.

By using the verification theorem (see [15, Theorem 3.5.2]) for the optimal
problem V (δ) in (15), the corresponding HJB-equation is obtained as

∂V

∂t
+ min

A∈A+

{1

2

(
a1(t) + a2(t)

∂P̃

∂x
(t, S̃t)

)2
‖σ(t)‖2S̃2

t

∂2V

∂x2

−
(
a1(t) + a2(t)

∂P̃

∂x
(t, S̃t)

)(
α(t)− r(t)

)
S̃t z

∂2V

∂x ∂z
(19)

+
1

2
‖θλ(t)‖2z2 ∂

2V

∂z2
+ ‖θλ(t)‖2z ∂V

∂z

}
= 0

subject to the boundary condition

(20) V (T, x, z) =
δx2

z
+

1− δ
xz

, (x > 0, z > 0).

For t ∈ [0, T ] and x, z > 0, the minimization in (19) involves a quadratic

polynomial in
(
a1(t) + a2(t)∂P̃∂x (t, S̃t)

)2
. Therefore, if ∂2V (t, x, z)/∂x2 > 0,

the minimizer is

â1(t) + â2(t)
∂P̃

∂x
(t, S̃t) =

(
z
(
α(t)− r(t)

)
|σ(t)|2S̃t

)(
(∂2V )/(∂x, ∂z)

(∂2V )/(∂x2)

)
.

Conversely, if ∂2V (t, x, z)/∂x2 < 0, the minimization problem has no solution,

as the minimum is attained when a1(t) + a2(t)(∂P̃ /∂x)(t, S̃t) → ±∞. On the
other hand, from (19), we have

∂2V (T, x, z)/∂x2 = 2δ/z + (1− δ)/(x3z) > 0, (x > 0, z > 0),

and therefore the minimization problem has a solution at least in the final
phase before the expiration time T . If

(
∂2V (t, x, z)

)
/
(
∂x2

)
≤ 0 we put a1(t) =

a2(t) = 0. This means that the agent invests her wealth on the bond to keep
A(t) =

(
a1(t), a2(t)

)
∈ A+. Substituting the above processes in (19), finally
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we see that if V (t, x, z) is the solution of the equation

∂V

∂t
+

1

2
‖θλ(t)‖2z2 ∂

2V

∂z2
+ ‖θλ(t)‖2z ∂V

∂z

− 1

2

(
z
(
α(t)− r(t)

)
‖σ(t)‖

)2 (
∂2V/∂x z

)2
(∂2V/∂x2)

= 0,(21)

V (T, x, z) =
δx2

z
+

1− δ
xz

, x > 0, z > 0;

then the portfolio process Âλ(t) =
(
â1(t), â2(t)

)
, 0 ≤ λ ≤ 1, with

(22) â1(t) + â2(t)
∂P̃

∂x
(t, S̃t) = L(t),

where

L(t) =

((
α(t)− r(t)

)
Zλ(t)

‖σ(t)‖2S̃t

)(
(∂2V/∂x ∂z)

(∂2V/∂x2)
(t, W̃t, Zλ(t))

)
is an optimum portfolio process for (6) (or equivalently (15)). We summarize
the above results in the below.

Theorem 4.1. With the above notations; the optimization problem (6) has a

family of solutions given by optimum processes Âλ(t), 0 ≤ λ ≤ 1, given by
(22).

Remark 4.2. It must be noted that, the equation (21) and the optimal portfolio
process (22) indicate that to compute V (t, x, z) and its derivatives, we require
α(t) and σ(t) over the entire interval [0, T ]. However, in a real application, our
market information is limited to the current time t ∈ [0, T ]. To address this, we
note that in application, we have to approximate these values appropriately (as
we will see in Section 5), thus in numerical computation, we can assume that
they are constant. This enables us to solve (21) numerically for all t ∈ [0, T ].

Remark 4.3. As shown in (22), the optimal investment processes form a family
of random processes. Specifically, if the investment ratio in the risky assets and
the derivative follows the (22), then the optimization problem (6) holds. This
is advantageous as, in real-world applications, minor adjustments to the main
investment strategy can yield incidental benefits for investors.

Remark 4.4. The family of optimum portfolios (22) includes two subsets: one
focused exclusively on risky assets (i.e., a2(t) ≡ 0) and the other solely on the
derivative (i.e., a1(t) = 0). Consequently, the investor can optimally choose a
portfolio without investing in either type of assets. The first subset aligns with
earlier studies while the second is less often addressed in recent research.

Section 5 presents application of the above result and its efficiency/deficiency
for managing BAD-portfolio processes.



194 O. Rabieimotlagh

5. Application, numerical optimization and simulation

The existence of a family of optimal portfolio processes means that differ-
ent investors can achieve the optimal result with different strategies. However,
probably the most important deficiency of the family of optimal processes (22)

is the presence of Zλ(t) in the structure of these processes. In fact, while S̃t
is calculated directly from observing the price of the underlying asset at the
moment, Zλ(t) has to be calculated and inserted manually from the second
equation of (18). The parameters α(t), r(t) and σ1,2(t) also should be approx-
imated appropriately, therefore we assume that they are positive constants,
then in the case λ = σ2

1/‖σ‖2, we have:

θλ =
α− r
‖σ‖2

σ.

In this case, since

S̃t = S0 exp

(
σ.̃bt −

1

2
‖σ‖2t

)
⇒ exp

(
σ.̃bt

)
= exp

(
1

2
‖σ‖2t

)
S̃t
S0
,

Zλ(t) = exp

(
−θλ .̃bt +

1

2
‖θλ‖2t

)
=
(

exp
(
σ.̃bt

)) r−α
‖σ‖2

exp

(
1

2

(α− r)2

‖σ‖2
t

)
,

so we have

(23) Zλ(t) =

(
S0

S̃t

) α−r
‖σ‖2

exp

(
t(α− r)2

2‖σ‖2
− t(α− r)

2

)
.

This enables us to compute Zλ(t), and therefore the optimal process Â(t) in

(22), directly by observing S̃t from the market moments.
We consider a bond with a return rate of 20% per year, giving us a daily

rate of approximately r ≈ 0.00055. Additionally, we examine a risky asset,
illustrated by Vt its price variation over 45 days in Fig. 1(a). Thus, the
corresponding normalized discounted price can be computed as below (see Fig.
1(b)):

St = Vt/V0, S̃t =
St
Bt

=
Vt
V0
e−0.00055t.

We also assume that the derivative of the portfolio is a European put with
maturity T = 45 and the strike price 3V0/2 = 198; thus the normalized strike
price is given by K = 3/2; and we have Φ(ST ) = (3/2−ST )+. We also assume
the agent invests equally in the risky asset and derivative, that is

(24) â1(t) = â2(t) =
L(t)(

1 + ∂P̃
∂x (t, S̃t)

) .
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Figure 1. (a): risky asset price Vt, (b): corresponding dis-

counted price S̃t.

Considering the price action Vt, we can approximate the volatility rate by
(see [16, Sec. 3.4.3] for methods on approximation of the volatility rate)

‖σ‖2 ≈ 1

45

44∑
j=0

ln2

(
V(j+1)

Vj

)
⇒ ‖σ‖ ≈ 0.0228114.

Computation of the return rate of the market, i.e. α, is a more challenging
problem. Let, n > 0 be an integer, h = T/n and define

Yn =
1

T

n∑
j=0

ln

(
V(j+1)h

Vjh

)
.

The central limit theorem, implies that as n→ +∞, the distribution of

Yn − (α− ‖σ‖2/2)

‖σ‖/
√
T

tends to a standard normal distribution. Thus

lim
n→+∞

P
(
|Yn − α+ ‖σ‖2/2| < ε

)
=

√
2

π

∫ ε
√
T/σ

0

e−y
2/2dy.

Here, for n = 4500, we have

‖σ‖2

2
+ Yn ≈ 0.00026018 +

1

45

4499∑
j=0

ln

(
V(j+1)/100

Vj/100

)
︸ ︷︷ ︸

≈0.00225325

≈ 0.00251343.

Thus, for ε = 0.01

P (|α− 0.00251343| < 0.01) ≈
√

2

π

∫ 0.01
√

45
0.023

0

e−y
2/2dy ≈ 0.996726.

This means that, we can appropriately assume that 0.0075 ≤ α ≤ 0.0125. In
what follows, we will assume that α takes almost the mean value, i.e. α = 0.01.
This allows us, for a given 0 ≤ δ ≤ 1, approximate numerically Zλ(t) in (23) and
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also V (t, x, z) in (21), and the optimal portfolio process Â(t) in (24). Fig.2(a),
..., Fig.2(f) shows the discounted wealth process for respectively δ = 0, ...,
δ = 1. Increasing the value of δ leads to a rise in the discounted wealth process,

Figure 2. The discounted wealth processes for δ =
0, 0.2, 0.4, 0.6, 0.8, 1.

which aligns with our expectation. From equation (6), we observe that raising
δ from 0 to 1 shifts the optimization problem from mean-variance minimization
to expectation maximization.

6. Conclusion

We analyzed a wealth process based on a BAD-portfolio and formulated the
optimal problem (6), which seeks to maximize expected wealth at time T > 0
while minimizing its mean square depending on the parameter 0 ≤ δ ≤ 1.
We calculated risk-neutral probabilities and demonstrated that the discounted
wealth process is devoid of a drift term (see (17)) with respect to these prob-
abilities. This allowed us to compute the minimizing portfolio processes (22)
corresponding to the HJB-equation (19). As we mentioned before, these port-
folios provide a family of optimal process allowing the agent the advantage
of choosing and balancing between the asset and the derivatives at each time
before T . Another advantage of the calculation is that the optimal portfolio
processes can be precisely linked to the asset price by appropriately choos-
ing the risk-neutral probability (Section 5, where we selected λ = σ2

1/‖σ‖2
and computed Zλ with respect to S̃t). This is crucial; without it, the results
were merely theoretical. Now, we can apply them in real-world scenarios, as
demonstrated in Section 5.
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[2] Callegaro, G., Gäıgi, M., Scotti, S., & et al. (2017). Optimal investment in markets with

over and under-reaction to information. Mathematical Finance Economy, 11, 299–322.
https://doi.org/10.1007/s11579-016-0182-8.

[3] Chiu, H., & Cont, R., (2023). A model-free approach to continuous-time finance. Math-
ematical Finance, 33(2), 257–273. https://doi.org/10.1111/mafi.12370.

[4] Czichowsky, C., (2013). Time-consistent mean-variance portfolio selection in discrete

and continuous time. Finance Stochastic, (17), 227–271.
https://doi.org/10.1007/s00780-012-0189-9.

[5] Enkhsaikhan, B., & Jo, O., (2024). Risk-averse Reinforcement Learning for Portfolio

Optimization. ICT Express, 10(4), 857-862. https://doi.org/10.1016/j.icte.2024.04.010.
[6] Escobar-Anel, M., Spies, B., & Zagst, R., (2024). Do jumps matter in discrete-time

portfolio optimization? Operations Research Perspectives, 13, 100312.

https://doi.org/10.1016/j.orp.2024.100312.
[7] Gourieroux, C., Laurent, G.P., & Pham, H., (2002). Mean-variance hedging and
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