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Abstract. Ceratitis capitate, commonly known as the Mediterranean

fruit fly, is one of the most destructive fruit pests in the world. The
Mediterranean fruit fly is the most economically important fruit fly species

because it causes severe destruction. In this paper, a dynamical model
based on a delay differential equation is introduced that is described the

life cycle of the insect. As follows, Hopf bifurcation is checked by chang-

ing the time delays.
In the next issue is estimated unknown parameters. It is proposed a

method, based on the least square approach and a finite set of observa-

tion, to estimate the parameters which are identifiable. Finally, using
numerical simulation, the stability at endemic equilibrium point is inves-

tigated.

Keywords: Delay differential system, Mediterranean fruit fly, Hopf bi-

furcation, Asymptotically stable, Parameter estimation.
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1. Introduction

Ceratitis capitate, commonly known as the Mediterranean fruit fly (Medfly),
is an exotic pest originating from sub-Saharan Africa. It is recognized as one
of the most destructive agricultural pests, attacking a wide variety of plants.
The Medfly can infest over 260 different plant species, including fruits, veg-
etables, nuts, and flowers [20]. Particularly susceptible hosts include apples,
cherries, pears, peaches, pomegranates, figs, apricots, citrus fruits, tomatoes,
and peppers—especially those with thin skins. The preferred hosts can vary
by region [3].

Although native to African tropical regions, Medfly has spread to many
parts of the world, including Western Australia, the Mediterranean region,
the Middle East, South and Central America, Hawaii, and southern Europe.
Despite having no close relatives in these areas, Medfly has occasionally infested
regions such as California, Texas, and Florida over the last century [5]. Their
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adaptability has been a key factor in their global proliferation [6]. In Iran,
Medfly was quarantined until 1975 when the first larva was detected in a peach
garden in Mashhad. Although it was temporarily eradicated by cold weather
and quarantine measures in 1978, Medfly reappeared in 1983, targeting not
only peach gardens but also tangerine, orange, and persimmon orchards [21].

The Medfly life cycle consists of four stages: egg, larva, pupa, and adult.
Under optimal conditions, this cycle can be completed in approximately 21
days, but in colder climates, it can extend to nearly 100 days. Each female
Medfly lays about 22 eggs beneath the skin of a susceptible fruit. The eggs
hatch in 2-4 days during summer or 19-20 days during winter, after which the
larvae emerge and feed on the fruit pulp. The larval stage lasts about 5-14
days in summer and 25-45 days in winter. Fully grown larvae then move to
the soil to pupate, with the pupal stage lasting 6-14 days in summer and 25-50
days in winter. Finally, adult Medflies emerge from the soil after 8-46 days and
begin laying eggs within 2-3 days. The primary agricultural damage caused
by Medflies includes oviposition in fruit and plant tissues, larval feeding that
opens entry points for bacteria and fungi, and the subsequent decay of plant
tissue due to secondary microbial invasions [15].

Several control methods for Medfly have been proposed, including Aerial
and Ground Bait Spray Application, Sterile Insect Technique (SIT), Insecticide
Application to Soil Under Host Trees and trapping. The economic impact
of Medfly, due to quarantine and monitoring programs, is significant. Thus,
not only have governmental measures been implemented to control Medfly,
such as strict regulations to prevent its entry via travelers or imported goods,
but scientific research is also crucial for understanding the Medfly’s life cycle
and spread. Accurate modeling of these phenomena is essential for developing
effective control protocols.

Mathematical models have been widely used in biological studies to provide
accurate predictions of phenomena crucial to fields such as agriculture, ecol-
ogy, and medicine [1, 12, 22]. Many such models focus on analyzing a ”target
population,” which has helped researchers effectively address biological prob-
lems. In the context of Medfly populations, numerous studies have applied
mathematical modeling to yield valuable insights into mortality rates, aging
processes, reproductive behavior, and population dynamics. For example, a
1995 study modeled the mortality rates of 600,000 Medflies across 167 co-
horts [3], while subsequent research in 2000 highlighted differences in mortality
trajectories between virgin and mixed-sex female Medflies, linking these pat-
terns to physiological aging [16]. A 2006 review further discussed key aspects
of modeling biological systems, particularly models relevant to limited lifespan,
aging, and death in Medflies [17]. Additionally, studies have modeled egg-laying
behavior [8], explored the relationship between fecundity and longevity across
species [16], and applied statistical methods to understand Medfly dispersion
and age structure in field populations [5, 14]. These studies have collectively



A new approach to the life cycle of Mediterranean fruit fly... – JMMR Vol. 15, No. 1 (2026) 201

advanced the understanding of Medfly biology, offering critical data for devel-
oping effective control strategies.

Given the presence of time delays in the Medfly life cycle—specifically in the
transitions from egg to larva, larva to pupa, and pupa to adult—a differential
system with time delays is appropriate for modeling these processes. This
paper introduces a dynamical model based on the Medfly life cycle and the
quantities of susceptible and infected fruits. The model’s parameters include
both scientifically meaningful and estimable ones, with the estimation being
critical for dynamical models. This paper employs the method introduced
in [2] to estimate the parameters, which not only allows for estimation but also
investigates their identifiability.

In 2008, a new Medfly control technique, the Spatial Decision Support Sys-
tem (SDSS), was introduced. Known as MedCila, this method consider various
models—binary, linear, logarithmic, and biological-based—to include all recog-
nized factors in its approach. MedCila’s recommendations were nearly always
convincing for coordinators, leading to a reduction in decision-making efforts
regarding plot management or spraying when no Medfly threat was present [9].

In 2010, a dynamic model and two type models were compared and applied
to the 1992 Medfly dataset [13], showing that these models were particularly
suitable for analyzing Medfly mortality data [19]. A 2012 study introduced a
statistical regression method based on time-to-death data, providing estimates
of average age changes in Medfly populations. This technique complemented
conventional approaches, especially those using mark-recapture survival analy-
sis like the one in [8], and applied to age structure studies employing advanced
strategies [6].

Further developments include a 2018 study that discussed the concept of
identity and its applications to Medfly populations, yielding good estimates
for age structure and mean age in wild populations [7]. In 2019, a life-table
invasion model for Medflies was proposed, featuring a progression model and
a partitioning model of invasions. This model helped formulate invasion dy-
namics and predict related spatiotemporal progression [23]. Recently, a game
theory-based framework was introduced to analyze the issue of infertile cases
selecting wild mates in a population, validated using Medfly data. This led to
the creation of a formula for controlling wild Medflies [10].

The structure of this paper is as follows: Section 2 introduces a mathe-
matical model as a differential system with time delays. In Sections 3 and 4,
equilibrium points are obtained, and the dynamical behavior at the disease-
free equilibrium point is investigated. Section 4 also covers the estimation of
unknown parameters. Finally, using the estimated parameters, the stability of
the endemic equilibrium point is examined, along with the effects of glue and
plowing on this stability.
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2. A time delay model for Medfly and its equilibrium

In the Medfly life cycle, the transitions from egg to larva, larva to pupa,
and pupa to adult involve two time delays. The model assumes that the du-
rations of the egg-to-larva and larva-to-pupa transitions are equal, denoted as
the time delay τ1. The second time delay, τ2, represents the maturation pe-
riod. Additionally, the quantity of garden fruits available to Medflies affects
their reproduction rate, so the model also considers the amounts of healthy and
infected fruits.

2.1. A time delay model for Medfly life span and fruit infection dy-
namics. Consider a garden of fruits where a population of Medflies is estab-
lished for the first time. Let E(t), L(t), P (t), and M(t) denote the number of
eggs, larvae, pupae, and mature Medflies at time t, respectively. Assume that
the total number of fruits, which are prime targets of the Medflies’ attack, is
K, which is constant. Let S(t) and I(t) represent the quantities of susceptible
fruits and infected fruits at time t, respectively.

At a given time t, the number of mature Medflies positively affects the
production of eggs at a rate of γ. Fertilized eggs develop into larvae at a rate of
β. The larvae then transform into pupae at a rate of α, with this transformation
influenced by the amount of susceptible and infected fruits. Pupae develop into
mature Medflies at a rate of µP . The mature Medfly population decreases due
to natural death and population control. The natural death rate is µM , and
the population control rate by glue is λ1. Plowing, which destroys pupae and
disrupts the life cycle, is another control method with a rate of γ1.

Overpopulation can lead to natural population reduction due to factors such
as emigration, starvation, and reduced birth rates. There are time delays in
each process: egg production by mature flies, larval development, pupal forma-
tion, and Medfly emergence. Since these delays are approximately equal, they
are collectively denoted by τ1. Additionally, τ2 represents the puberty duration.
Note that γ, β, α, µP , µM , γ1 and λ1 are all non-negative parameters.

The growth of the susceptible fruit population is modeled by a logistic func-
tion with a growth rate λ2. At time t, the rate of harvesting susceptible fruits
is µS , and the rate of infection of susceptible fruits by Medflies is ν. Infected
fruits are removed at a rate of w due to damage caused by Medflies. The rate
of harvesting damaged fruits is µI . The parameters λ2, ν, µS , w and µI are
also non-negative.

Figure 1 illustrates the schematic diagram of both the Medfly life cycle
(upper boxes) and the time evolution of fruits (lower boxes). In this diagram,
black arrows represent population transfers between boxes, blue arrows indicate
the effects of susceptible and infected fruits on Medfly attacks, and brown
arrows depict the negative impact of the larval population on susceptible and
infected fruits. The purple arrow represents the effect of the mature Medfly
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Figure 1. Schematic diagram illustrating the life span of
Medflies (upper boxes) and the time evolution of fruits (lower
boxes).

population on the number of eggs. The mathematical model is:

dE

dt
= γM(t)− βE(t− τ1)

dL

dt
= βE(t− τ1)− αL(t− τ1)(S(t) + I(t))

dP

dt
= αL(t− τ1)(S(t) + I(t))− µPP (t− τ1)− γ1P (t)

dM

dt
= µPP (t− τ1)− µMM(t− τ2)− λ1M(t)

dS

dt
= λ2S(t)

(
1− S(t)

K

)
− νS(t)L(t)− µSS(t)

dI

dt
= νS(t)L(t)− wL(t)I(t)− µII(t)

,(1)

2.2. Equilibrium states. To determine the equilibrium states, consider the
system at equilibrium where(

dE

dt
,
dL

dt
,
dP

dt
,
dM

dt
,
dS

dt
,
dI

dt

)
= 0.

It is evident that G0 = (0, 0, 0, 0, 0, 0) represents a trivial equilibrium state with
no significant dynamics. Similarly, S = 0 leads to a trivial equilibrium state.

Assume S 6= 0. At equilibrium, we have:

M =
β

γ
E.(2)
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E =
α

β
L(S + I).(3)

αL(S + I) = (µP + γ1)P.(4)

If P = 0, from Eqs. (2) and (4) we find M = 0 and L = 0, respectively.
Substituting L = 0 into Eqs. (2) and (3) lead to E = 0 and I = 0. Therefore,
the equilibrium state is given by:

G1 =

(
0, 0, 0, 0,

K(λ2 − µS)

λ2
, 0

)
, where µS < λ2.

If P 6= 0, substituting Eqs. (3) and (4) into Eq. (2) yields

M =
µP

µM + λ1
P.(5)

Using Eq. (5) and P > 0, the condition dM
dt = 0 is satisfied if:

γµP
(µP + γ1)(µM + λ1)

= 1,(6)

which implies that the rate of egg laying exceeds the combined rate of death
of adult insects and glue application. If λ2 > µS and L < λ2−µS

ν , an endemic

equilibrium point exists. Thus, from
dS

dt
= 0, we obtain:

S∗ =
K(λ2 − νL∗ − µS)

λ2
.(7)

Finally,
dI

dt
= 0 results in:

I∗ =
νL∗S∗

ωL∗ + µI
.(8)

2.3. Boundedness, existence and uniqueness solutions of system. The
boundedness property of the system is examined.

Theorem 2.1. The solutions of the system are uniformly bounded.

Proof. Consider the new variable

X(t) = E(t) + L(t) + P (t) +M(t) + S(t) + I(t).

We have
dX

dt
=
dE

dt
+
dL

dt
+
dP

dt
+
dM

dt
+
dS

dt
+
dI

dt
.

The carrying capicity of the population of fruits is K. Hence, S(t) ≤ K for
all t. also, there is K ′ > 0, M(t) ≤ K ′. Because of lack of facilities and
food, the adult population does not grow uncontrollably. Rather, according
to biological data, they begin to migrate when they reach a number close
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to K ′. Put Λ = min{γ, µM , λ1, µS , µI , ω} and K ′′ = max{K,K ′}. Thus,
γM + ΛE + λ2S ≤ Λ′K ′′, where, Λ′ = γ + Λ + λ2 and

dX

dt
≤ γM + λE − ΛX ≤ Λ′K”− ΛX

. By solving the above linear differential equation in terms of variable X one
gets,

X(t) ≤ Λ′K ′′

Λ
+ (X0 −

Λ′K ′′

Λ
)e−Λt.

Now, by tending t −→ ∞, we obtain 0 ≤ X ≤ Λ′K′′

Λ . Hence, all solutions of
the system are in the region

Ω := {X ∈ R6 : 0 ≤ X ≤ Λ′K ′′

Λ
+ ε}

for any ε > 0 as t −→∞. �

Theorem 2.2. Consider the model 1 subjected to the following initial condi-
tions

E(0) = E0, L(0) = L0, P (0) = P0,M(0) = M0, S(0) = S0, I(0) = I0.

The model solutions exist and are unique.

Proof. Let
f(E,L, P,M, S, I) = (γM(t) − βE(t − τ1), βE(t − τ1) − αL(t − τ1)(S(t) +
I(t)), αL(t−τ1)(S(t)+I(t))−µPP (t−τ1)−γ1P (t), µPP (t−τ1)−µMM(t−τ2)−

λ1M(t), λ2S(t)

(
1− S(t)

K

)
−νS(t)L(t)−µSS(t), νS(t)L(t)−wL(t)I(t)−µII(t),

f is a continuous function on R6. Using [1], for any initial value, σ = (E −
0, L0, P0,M0, S0, I0), there is a solution of the model passing through σ. To
prove the uniqueness of the solution with initial condition σ, we should prove,
the model is satisfied in Lipschitz condition.
Consider σ in a compact set Γ of R6 and σ1 = (E1, L1, P1,M1, S1, I1) and
σ2 = (E2, L2, P2,M2, S2, I2) are in Γ.
Put Y = (γ(M1−M2)−β(E1−E2))2 +(β(E1−E2)−α(L1(S1 + I1)−L2(S2 +
I2))2 + (α(L1(S1 + I1)− L2(S2 + I2))− (µP + γ1)(P1 − P2))2

+(µP (P1−P2)−(µM+λ1)(M1−M2))2+(λ2(S1(1− S1

K )−S2(1− S2

K ))−ν(S1L1−
S2L2)− µS(S1 − S2))2 + (ν(S1L1 − S2L2)− ω(L1I1 − L2I2)− µI(I1 − I2))2.
Since, K is carrying capaicity of fruits, we have
‖ f(E1, L1, P1,M1, S1, I1)− f(E2, L2, P2,M2, S2, I2) ‖
=
√
Y 6

√
Y1

6
√
K ′((E1−E2)2+(L1−L2)2+(P1−P2)2+(M1−M2)2+(S1−S2)2+(I1−I2)2)

1
2

6
√
K ′ ‖ σ1 − σ2 ‖ .

where,
(γ2 + (µM +λ1)2)(M1−M2)2 + 2β2(E1−E2)2 + (8α2 + 2ν2 +ω2)K2(L1−L2)2

+ (µ2
p + (µp + γ1)2)(P1 − P2)2 + (λ2

2 + µ2
S)(S1 − S2)2 + µ2

I(I1 − I2)2,
and
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K ′ = max{γ2 + (µM + λ1)2, 2β2, (8α2 + 2ν2 + ω2)K2, µ2
p + (µp + γ1)2, λ2

2 +

µ2
S , µ

2
I}. �

3. Stability analysis of the steady state

In this section, stability at the disease free equilibrium point is investigated.
Linearising the model near disease free equilibrium point

G1 = (E∗, L∗, P ∗,M∗, S∗, I∗) =

(
0, 0, 0, 0,

K(λ2 − µS)

λ2
, 0

)
,

The characteristic equation of system is determinant of the following matrix,
J .

(9) J =


a1 0 0 γ 0 0
a2 a3 0 0 a4 a4

0 a5 a6 0 −a4−a4

0 0 a7a8 0 0
0 a9 0 0 a10 0
0 a11 0 0 a12 a13 0

 .

Where,
a1 = −λ− βe−τ1λ, a2 = βe−τ1λ, a3 = −λ− α(S + I)e−τ1λ, a4 = −αL,
a5 = α(S + I)e−τ1λ, a6 = −γ1 − λ1 − µP e−τ1λ, a7 = µP e

−τ1λ,
a8 = −λ1 − λ − µMe−τ2λ, a9 = −νS, a10 = H − λ, a11 = νS − ωI,
a12 = νL, a13 = −ωL− µI − λ.
The characteristic equation at the equilibrium point G1 is

(10) (H − λ)(µI + λ)P (λ) = 0,

where

P (λ) =(λ+ βe−τ1λ)(λ+ λ1 + µMe
−τ2λ)(λ+ αS∗e−τ1λ)(γ1 + λ1 + µP e

−τ1λ)

− αβγµPS∗e−3τ1λ.(11)

Two of roots are λ = H = λ1(1 − 2S∗

K ) − µs and λ = −µI , which are both
negative. In the following, we will investigate the rest of the roots.

If both time delays be zero, the rest of the roots of characteristic equation
are obtained from the following polynomial

(12) λ3 + a1λ
2 + a2λ+ a3 = 0,

where

a1 = αS∗ + β + λ1 + µM ,

a2 = (αS∗ + β)(λ1 + µM ) + αβS∗,

a3 = αβS∗(λ1 + µM )− αβS∗µP γ

γ1 + λ1 + µP
.
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Theorem 3.1. Suppose that the rate of gluing is more than the rate of the med-
fly egg laying, λ1 > γ, then the disease free equilibrium point is asymptotically
stable.

Proof. Using the above relationships and the assumption of the theorem a1 > 0,
a2 > 0, a3 > 0 and a1a2 > a3. Thus, using the Ruth- Hurwitz theorem, the
disease free equilibrium point is asymptotically stable. �

As follows, the stability of the disease free equilibrium point is investigated
by changing the time delay, τ2. If τ1 = 0 and τ2 > 0 the characteristic equation
is

(H − λ)(µI + λ)[P0(λ) + P1(λ)e−τ2λ] = 0.

Where,
P0(λ) = λ3 + a2λ

2 + a1λ+ a0,
and
P1(λ) = µM (λ2 + b1λ+ b0).
Which,
a0 = αβS∗(λ1 − γµP

γ1+λ1+µP
),

a1 = αβS∗ + βλ1 + αS∗λ1

a2 = β + αS∗ + λ1,
b0 = αβS∗,
b1 = αS∗ + β.
If λ1 > γ, all coefficients are positive. Hence, the equation

(13) P0(λ) + P1(λ)e−τ2λ = 0

does not have nonnegative real roots.
As follows, if the root of the characteristic equation (13), λ is a complex number.
The following theorem is established.

Theorem 3.2. Consider λ1 > µM , then sign{d(Reλ)
dτ2
}λ=iθ > 0.

Proof. The proof of the Theorem is given in the appendix A. �

By theorem 3.2, τ∗2 is the value of τ2 for which the roots of characteris-
tic equation 13 cross the imaginary axis. Let λ(τ2) = α(τ2) + iθ(τ2) be the
root of 13 at τ2 = τ∗2 that satisfying α(τ∗2 ) = 0 and θ(τ∗2 ) = θ). Since,

sign{d(Reλ)
dτ2
}λ=iθ > 0, α(τ2) = Re(λ) is increasing function near τ∗2 . Hence,

α(τ2) < 0 for 0 < τ2 < τ∗2 and α(τ2) > 0 for τ2 > τ∗2 . Therefore, the disease
free equilibrium point is asymptotically stable for 0 < τ2 ≤ τ∗2 and is unstable
for τ2 > τ∗2 . Therefore, Hopf bifurcation is ocurred at a critical value of the
time delay τ2 = τ∗2 .
According to the above results, if the lifespan of an adult insect is less than τ∗2 ,
the disease free equilibrium point is asymptotically stable. Therefore, agricul-
tural products are not affected by Medflies and remain healthy. Otherwise, an
epidemic will occur and the agriculture product will be seriously damaged.
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If τ2 = 0 and τ1 > 0, the characteristic equation is

(14) ∆(τ1, λ) = P0(λ) + P1(λ)e−λτ1 + P2(λ)e−2λτ1 + P3(λ)e−3λτ1 = 0.

Where
P0(λ) = λ2(γ1 + λ1)(λ2 + (2λ1 + µp)λ+ λ1(λ1 + µP )),
P1(λ) = (λ+ λ1 + µP )(βλ(λ1 + γ1) + αλS∗(λ1 + γ1) + µPλ

2),
P2(λ) = µPλ

3 + λ2(µP (λ1 + µP ) + (λ1 + γ1)(αS∗ + β)) + λ(λ1 + µP )(λ1 +
γ1)(αS∗ + β),
and
P3(λ) = αβS∗µP (λ+ λ1 + µP − γ).
Obviously, Pi(λ) > 0 for i = 0, 1, 2. If λ1 > γ, P3(λ) > 0. Therefore, all real
roots of the above equation are negative.
The theorem that defines the stability conditions is given in Appendix A. To
investigate of stability, we use of iterative procedure [18].
By Theorem 6.1 that is given in Appendix A, the disease free equilibrium
point is unstable for 0 < τ1 ≤ τ∗1 and is stable for τ1 > τ∗1 . Therefore, Hopf
bifurcation is accrued a critical value of the time delay τ1 = τ∗1 . Hence, if the
duration of larva- to- pupa transmission, τ1, is less than τ∗1 , the disease free
equilibrium point is unstable. Thus, the epidemic is happened. If τ1 > τ∗1 ,
the disease free equilibrium point is stable. Hence, the agricultural product
remains healthy.

4. Parameter estimation

Since it is difficult to check the dynamic behavior of the model without
specifying the parameters. The values of all parameters except γ1 and λ1

are obtained using the biological information of the Medfly [11], [4] and [18].
They are given in the table1. In this section, we estimate the values of the
parameters γ1 and λ1. These are control parameters. Since Medfly is one of the
pests that cause great damage to agricultural products, spatially garden crops.
Control factors are needed to reduce damage. There are two effective methods,
gluing and plowing. The value of these parameters is not fixed. Hence, using
data obtained from a garden, they are approximated. These parameters are
estimated according to the statistical data obtained from a peach garden in
Kerman province. The yield of each peach tree is 50 to 70 kilogram. An
average of 65 tons of fruit is harvested per hectare, so K = 65.
As follows, parameters λ1 and γ1 are estimated in the framework of control
theory that is introduced in [2].

Based on the data obtained during 13 weeks, the values of the unknown
parameters have been estimated.
According to the values of the parameters in the Table1, using the explanation
provided in the Appendix B, the approximations of the parameter vector p =
(γ1, λ1) is given in Table2. Therefore, the value of the parameters γ1 = 0.1 and
λ1 = 0.09 is approximated.
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Table 1. The values of parameters

Parameter Value Definitions

γ 22 The number of eggs laid by an adult insect in each oviposition
α 0.01 The rate of larva that change to pupa
ω 0.01 The rate of damage hurt fruits by larva
µM 0.12 The mortality rate of adult insect
β 0.8 The rate of eggs that change to larva
µP 0.69 The rate of pupa that change to adult insect
µS 0.5 The rate of harvesting healthy fruits
µI 0.5 The rate of harvesting damage fruits
ν 0.01 The rate of damage healthy fruits by larva
λ2 0.146 The growth rate of healthy fruits

Table 2. The values of parameters are obtained from biolog-
ical information

pupulation E(k) L(k) P (k) M(k) S(k) I(k)
k = 0 0 0 0 150 120 0
k = 1 960 0 0 150 170 0
k = 2 1781 679 0 120 250 0
k = 3 1766 1264 450 90 290 80
k = 4 959 1300 846 265 300 92
k = 5 1310 700 820 501 240 66
k = 6 2700 706 401 610 227 65
k = 7 2851 717 388 700 108 51
k = 8 1750 1960 469 475 50 33
k = 9 700 908 520 301 24 12
k = 10 300 410 443 209 10 4
k = 11 171 122 178 100 6 1
k = 12 0 50 53 70 2 0
k = 13 0 0 0 55 0 0

Table 3. Data obtained during 13 weeks from a peach garden
in Kerman province

Also, using of data in Table 3 and Matlab’s curve fitting, the equation of
γ1 is γ1(t) = aexp(bt) where a = 34.0751 and b = −0.8463 with confidence
interval a = (18.7641, 49.3861), b = (−1.1833,−0.5094) and R2 = 0.9208. The
equation of λ1 is λ1(t) = p4t

4 + p3t
3 + p2t

2 + p1t + p0, where p4 = 0.001,
p3 = 0.135, p2 = −0.0793, p1 = 0.1921 and p0 = −0.0796. The interval
confidence of coefficients are p4 = (−0.0015,−0.0005), p3 = (0.0069, 0.02),
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Table 4. Estimated values of the parameters

Estimated values of the parameters vector p = (γ1, λ1)

p1 = (3.97, 0.1365)
p2 = (3.3467, 0.1413)
p3 = (0.9001, 0.1341)
p4 = (0.3457, 0.0660)
p5 = (0.0725, 0.0531)
p6 = (0.1039, 0.0682)
p7 = (0.0980, 0.0735)
p8 = (0.0947, 0.0970)
p9 = (0.0942, 0.1021)
p10 = (0.0980, 0.1021)
p11 = (0.1035, 0.1027)
p12 = (0.1018, 0.1013)
p13 = (0.1006, 0.0978)
p14 = (0.1, 0.09)

p2 = (−0.1171,−0.0416), p1 = (0.0987, 0.2856) and p0 = (−0.1546,−0.0046)
with R2 = 0.9304.

5. Experimental calculations

In this section, according to the parameter values specified in the previous
section, the solution curves of the model are drawn. MATLAB software was
used to draw the solution curves. As you see, in the first weeks, due to the pres-
ence of enough eggs and larvae, the population of pupae increases. As a result,
the population of adult insects increases. Then, in the following weeks, the
number of eggs increases with the laying of eggs by adult insects and reaches
its peak in the sixth week. In the seventh and eighth week, the number of
larvae reaches its maximum number. But it is the peak of the harvest time.
Hence, most of the larvae die and only a few become pupae. Therefore, after
that, the population of adult insects, as well as the number of eggs, larvae and
pupae, tends to zero.
According to the data in the Table 2, the initial value of healthy and damaged
fruits usable for Medflies are 120 and 0 respectively. Overtime, the fruits will
ripen over the following weeks. Also, enough food is provided for the Medfly.
Hence, the number of damaged fruits are increased. After four weeks, the har-
vest season comes and most of healthy and damaged fruits are being picked.
Therefore, the population of fruits decreases. It reaches its lowest value from
the eighth week onwards. The reduction has a direct effect on the insect pop-
ulation.
According to the results, the fruits are harvested before the excessive increase



A new approach to the life cycle of Mediterranean fruit fly... – JMMR Vol. 15, No. 1 (2026) 211

Figure 2. Solution curve for eggs

Figure 3. Solution curve for larva

Figure 4. Solution curve for pupa

of insects. Therefore, the epidemic does not occur. It is difficult to check the
stability of the endemic equilibrium point of the model analytically. Then, solv-
ing the characteristic equation at the endemic equilibrium point and according
to the parameter values, a positive eigenvalue is obtained, so the equilibrium
point is unstable. Therefore, according to the data obtained from this garden,
the garden production is not seriously damaged.
Hence, the disease free equilibrium point is asymptotically stable and endemic
equilibrium point is unstable.
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Figure 5. Solution curve for adults

Figure 6. Changes in eigenvalue relative to parameter γ1

Figure 7. Changes in eigenvalue relative to parameter λ1

5.1. Parameter study. As follow, the effect of changing parameters, γ1 and
λ1 on the stability of the endemic equilibrium point is investigated.
In this section, we examine the effect of glue and plowing on the stability or
instability of the endemic equilibrium point. The value of γ1 and λ1 is changed
from 0 to 0.1. The following diagrams are drawn, that show the relationship
between these two parameters with the eigenvalue of the characteristic equation
at the endemic equilibrium point. As can be seen, the endemic equilibrium
point is asymptotically stable for small values of the parameters, λ1 and γ1.
Therefore, epidemic occurs. But by increasing the values of these two param-
eters, the point becomes unstable. Therefore, epidemic does not occur. This
shows the importance of using these two control factors.
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According to Figures 6 and 7, transcritical bifurcation occurs at γ1 = 0.024
and λ1 = 0.014.

6. Conclusion

One of the agricultural pests that damage more than 260 types of plants is
the Mediterranean fly. This fly causes a lot of damage in many parts of Iran,
including Kerman province. In this paper, considering the life cycle of Medfly,
a dynamical model based on DDEs has been introduced. The model explains
life cycle of fly and its effect on the fruit. In this model, two control param-
eters, glue to kill adult flies and plow to kill pupa are considered. These two
parameters have effective role to control insect population. From dynamical
point of view, the stability conditions of the disease free equilibrium point have
been investigated analytically.
As follow, according to the biological properties of insect and data that is
provided by Research Technology Institute of Plant Production in Kerman
the values of most of parameters are estimated. To approximate two control
parameters, glue and plow, the least square approach and a finite set of obser-
vation method is used. According to parameter values and initial conditions
of insect population in the desired area, using Matlab software, solution curves
are drawn.
The graphs show population changes for sixteen weeks. According to the di-
agrams, because of the presence of fruit, the insect population increase in the
early weeks. But after a few weeks, due to the harvest and controlling factors,
the population decrease. As a result, the production is not seriously damaged
and epidemic is not occur. Also, it is determined that endemic equilibrium
point is unstable.
Finally, the effect of glue and plow is investigated on stability of endemic equi-
librium point. It can be seen that if the rate of trapping is low, the endemic
equilibrium point is stable. Therefore, the epidemic will happened and the
agriculture product is seriously damaged. Thus, a threshold value for trapping
is obtained. And a transcritical bifurcation is occurred.

Appendix A

The proof of Theorem 3.2:
If λ = iθ, where θ is a positive number. Separating real and imaginary part of
equation (13) yields

a0 − a2θ
2 + µM ((b0 − θ2)cosθτ2 + b1θsinθτ2) = 0

a1θ − θ3 + µM (b1θcosθτ2 − (b0 − θ2)sinθτ2) = 0.

Squaring and adding these two equations give the following equation.

θ6 + (a2
2 − 2a1 − µ2

M )θ4 + (a2
1 − 2a0a2 + (b21 − 2b0)µ2

M )θ2 + a2
0 − µ2

Mb
2
0 = 0.
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Let θ2 = ω > 0. The equation reduces to

f(ω) = ω3 + c2ω
2 + c1ω + c0 = 0

where
c0 = a2

0 − µ2
Mb

2
0

c1 = a2
1 − 2a0a2 + (b21 − 2b0)µ2

M

and
c2 = a2

2 − 2a1 − µ2
M .

We can check easily c2 > 0. If λ1 > µM , c1 > 0 and f ′(ω) > 0. Given that
f(0) = c0, two cases is accured. If λ1 − µM > γµP

γ1+λ1+µP
, c0 > 0. Therefore,

f(ω) has no root. Hence, the disease free equilibrium point is asymptotically
stable. Otherwise, if c0 < 0, f(ω) has a positive real root.

ω =
−1

3
(c1 + C +

∆0

c2
).

Where

C = (
∆1 +

√
∆2

1 − 4∆3
0

2
)

1
3 ;

∆0 = c21 − 3c2,
and
∆1 = 2c31 − 9c1c2 + 27c0.
Thus, θ =

√
ω. Substituting λ = iθ into equation (13) gives

τ∗2 =
1

θ
arctan(

q1(θ)

q2(θ)
).

Where
q1(θ) = (b0 − θ2)(b1θ(a2θ

2 − a0) + (a1θ − θ3)(b0 − θ2))
and
q2(θ) = (a2θ

2−a0)(b1θ
2− (b0−θ2)2)− b1θ(b1θ(a2θ

2−a0)+(a1θ−θ3)(b0−θ2).
To determine whether the steady state undergoes a Hopf bifurcation at τ2 = τ∗2 ,

we have to compute the sign of
dRe[λ(τ∗2 )]

dτ2
.

From (13), we have

(P ′0(λ) + (P ′1(λ)− τ2P1(λ))e−τ2λ)
dλ

dτ2
= λP1(λ)e−τ2λ.

Therefore,

(
dλ

dτ2
)−1 =

−P ′0(λ)

λP1(λ)
eτ2λ +

P ′1(λ)− τ2P1(λ)

λP1(λ)
,

and eτ2λ = −P1(λ)
P0(λ) . Thus,

sign{d(Reλ)
dτ2
}λ=iθ = sign{Re( dλdτ2 )−1}λ=iθ

= sign{Re 3θ2−a1−i2a2θ
(θ4−a1θ2)+i(a0θ−a0θ3) +Re b1+2iθ

−b1θ2+i(b0θ−θ3)}

= sign{ (3θ2−a1)(θ2−a10−2a2(a0−a1θ2)−b21+2(b0−θ2))

µM (b20θ
2+(b0−θ2)2

}

= sign{
3θ4+2θ2(a+2αβS∗(αS∗+β+λ1)

γµP
γ1+λ1+µP

+(α2S∗2+β2)(λ2
1−µ

2
M ))

µ2
M (b21θ

2+(b0−θ2)2)
}.
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Where a = α2S∗2 + β2 + λ2 − µ2
M + α2β2S∗2.

Since, λ1 > µM , sign{d(Reλ)
dτ2
}λ=iθ > 0. This implies that all the roots that

cross the imaginary axis at iθ cross from left to right as τ∗2 increases.
Therefore, for τ2 < τ∗2 , the equilibrium point is asymptotically stable and
τ2 > τ∗2 the equilibrium point is unstable.

If τ2 = 0 and τ1 > 0, the characteristic equation is

(15) ∆(τ1, λ) = P0(λ) + P1(λ)e−λτ1 + P2(λ)e−2λτ1 + P3(λ)e−3λτ1 = 0.

Where
P0(λ) = λ2(γ1 + λ1)(λ2 + (2λ1 + µp)λ+ λ1(λ1 + µP )),
P1(λ) = (λ+ λ1 + µP )(βλ(λ1 + γ1) + αλS∗(λ1 + γ1) + µPλ

2),
P2(λ) = µPλ

3 + λ2(µP (λ1 + µP ) + (λ1 + γ1)(αS∗ + β)) + λ(λ1 + µP )(λ1 +
γ1)(αS∗ + β),
and
P3(λ) = αβS∗µP (λ+ λ1 + µP − γ).
Obviously, Pi(λ) > 0 for i = 0, 1, 2. If λ1 > γ, P3(λ) > 0. Therefore, all real
roots of above equation are negative.
At the beginning of the appearance of the Medfly, the parameters λ1 and γ1 are
considered zero. To investigate of stability, we use of iterative procedure [18].
If τ1 6= 0, an iterative procedure can be used to find the equation F (ω), whose
roots, ω, give the Hopf bifurcation with purely imaginary roots of the char-
acteristic equation (13). To determine a function F (ω), which gives the Hopf
bifurcation associated with purely imaginary roots of equation (15). Substi-
tuting λ = iω into equation (15), since P0(iω) = 0. Hence, the equation (15)
reduces

(16) ∆(τ1, λ) = P1(λ) + P2(λ)e−λτ1 + P3(λ)e−2λτ1 = 0

Where
P1(λ) = P2(λ) = (λ+ µP )µPλ

2,
and
P3(λ) = αβS∗µP (λ+ µP − γ).
Substituting λ = iω into (16) and conjugating ∆(τ1, iω) gives

∆(τ1, iω) =
∑3
k=1 Pk(iω)e−iωτ1 , ∆(τ1, iω) =

∑3
k=1 Pk(iω)e−iωτ1 .

Obviously, ∆(τ1, iω) = 0 if and only if ∆(τ1, iω) = 0.
According iterative procedure, define ∆(1)(τ1, iω).

∆(1)(τ1, iω) = P1(iω)∆(τ1, iω)− P3(iω)∆(τ1, iω)e−2iωτ1

= P
(1)
1 (iω) + P

(1)
2 (iω)e−iωτ1 .

Where
P

(1)
1 (iω) = |P1(iω)|2 − |P3(iω)|2

P
(1)
2 (iω) = P1(iω)P2(iω)− P2(iω)P3(iω).

Let F (ω) = |P (1)
1 (iω)|2 − |P (1)

2 (iω)|2, ∆(τ1, iω) = 0, whenever ω is a root of
F (ω). The function F (ω) is
a8ω

16 + a7ω
14 + a6ω

12 + a5ω
10 + a4ω

8 + a3ω
6 + a2ω

4 + a1ω
2 + a0 = 0.
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Where,
a0 = α4β4S∗4µ4

P (µP − γ)4,
a1 = 2α8β8S∗8µ8

P (µP − γ)8,
a2 = 2α4β4S∗4µ4

P (µP − γ)2,
a3 = 2α4β4S∗4µ6

P (µP − γ)2[2α2β2S∗2 + 2µ2
P (µP − γ)2 + α3β3S∗3µ4

P (µP −
γ)6(−2(µP − γ)− αβS∗(γ2 − 4µP γ + 2µ2

P ))],
a4 = α2β2S∗2µ8

P [α2β2S∗2(α2β2S∗2+µ2
P (µP−γ)2)2+4α3β3S∗3(µP−γ)2(−2(µP−

γ)− αβS∗(γ2 − 4µP γ + 2µ2
P ))− 2(µP − γ)2(αS∗ + β)2γ2],

a5 = 2α2β2S∗2µ7
P [αβS∗µP (α2β2S∗2 + µ2

P (µP − γ)2)(−2(µP − γ)−αβS∗(γ2 −
4µP γ + 2µ2

P ))− 2γ2(µP − γ)(αS∗ + β)(µ2
P − αS∗ − β)],

a6 = α2β2S∗2µ6
P [µ2

P (2(µP − γ) +αβS∗(γ2− 4µP γ+ 2µ2
P )2)− 2γ2(µ2

P −αS∗−
β)2 + 4µP γ(µP − γ)2(αS∗ + β)],
a7 = 2α2β2S∗2µ6

P γ(2µP − γ)(µ2
P − αS∗ − β),

a8 = −4α2β2S∗2µ7
P (µP − γ).

Let θ = ω2, the equation F (ω) = 0 can rewritten as follows,

h(θ) = a8θ
8 + a7θ

7 + a6θ
6 + a5θ

5 + a4θ
4 + a3θ

3 + a2θ
2 + a1θ + a0 = 0.

Without loss of generality, suppose that h(θ) has eight distinct positive roots
denoted by θ1, θ2, ..., θ8, so F (ω) has eight positive roots

ωi =
√
θi, i = 1, 2, ..., 8.

Substituting λk = iωk into equation (16) and then separating real and imagi-
nary parts gives

−µpω2cosωτ1 − ω3sinωτ1 + αβS∗(µp − γ)cos2ωτ1 + αβS∗ωsin2ωτ1 = µpω
2,

µpω
3sinωτ1 − ω3cosωτ1 − αβS∗(µp − γ)sin2ωτ1 + αβS∗ωcos2ωτ1 = ω3.

Squaring two equations and adding them gives

τ j1k = tan−1(
d3(c1d1 − c2d2)

d1(c3d1 − c2d3)
− d2

d1
) + jπ. k = 1, 2, ..., 8, j = 0, 1, ...,

Where, c1 = −2µpω
2
kαβS

∗(µp − γ − µpω2
k),

c2 = 2µpω
3
kαβS

∗(µp − γ − 1),
c3 = −µ4

pω
6
k − α2β2S∗2((µp − γ)2 + ω2

k),

d1 = µpω
2
k + αβS∗2(µp − γ),

d2 = ω3
k − αβS∗2ωk,

d3 = µ4
pω

6
k.

The solutions of (16) are (τ j1k, ωk). That means λ = iωk are pairs of purely

imaginary roots of (16) with τ1 = τ j1k.
Let τ∗1 = τ0

1k0
= min1≤k≤8{τ0

1k0
} and ω0 = ωk0 . This is the first time delay for

which the roots of characteristic equation (16) cross the imaginary axis. Let
λ(τ1) = α(τ1)+iω(τ1) be the root of (16), using the above calculations, α(τ∗1k) =
0 and ω(τ∗1k) = ω0. As follows, to determine whether the equilibrium point

undergoes a Hopf bifurcation at τ1 = τ∗1 , we determine the sign of
dRe(λ(τ∗1 ))

dτ∗1
,

for λ(τ∗1 ) = iω0.
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Theorem 6.1. Suppose, 3ω2
0+2µp−2γ < 0, αβγS∗−µp(1+ω2

0)(2µ2
p+3ω2

0) > 0

and γ − ω0(2µ2
p + 3ω2

0) > 0 then
dRe(λ(τ∗1 ))

dτ∗1
< 0.

Proof. Let P1(λ), P2(λ) and P3(λ) be coefficients of equation (16). Considering
P1(iω0) = P2(iω0) = x1(ω0) + iy1(ω0) and P3(iω0) = x2(ω0) + iy2(ω0). Where
x1(ω0) = −µ2

pω
2
0 ,

y1(ω0) = −µpω3
0 ,

x2(ω0) = αβS0µp(µp − γ),
y2(ω0) = αβS0µpω0.

Hence, P
(1)
1 (iω0) = x2

1 + y2
1 − x2

2− y2
2 , and P

(1)
2 (iω0) = x2

1 + y2
1 − x1x2− y1y2 +

i(x2y1 − x1y2).
Substituting these expressions into ∆(τ∗1 , iω0) = 0 and ∆(1)(τ∗1 , iω0) = 0, then
separating real and imaginary parts gives

x1cosω0τ
∗
1 + y1sinω0τ

∗
1 + x2cos2ω0τ

∗
1 + y2sin2ω0τ

∗
1 = x1

y2cosω0τ
∗
1 − x1sinω0τ

∗
1 + y2cos2ω0τ

∗
1 − x2sin2ω0τ

∗
1 = −y1

(x2
1 + y2

1 − x1x2 − y1y2)cosω0τ
∗
1 + (x2y1 − x1y2)sinω0τ

∗
1 = x

(x2y1 − x1y2)cosω0τ
∗
1 − (x2

1 + y2
1 − x1x2 − y1y2)sinω0τ

∗
1 = 0

(17)

Where x = −x2
1− y2

1 −x2
2− y2

2 . Solving the system gives the values of sinω0τ
∗
1 ,

cosω0τ
∗
1 , sin2ω0τ

∗
1 and sin2ω0τ

∗
1 .

sinω0τ
∗
1 = −AC

C2−B2 , cosω0τ
∗
1 = AB

C2−B2 , sin2ω0τ
∗
1 = −2A2BC

(C2−B2)2 and cos2ω0τ
∗
1 =

−A2

C2−B2 . Where, A = x2
1 + y2

1 + x2
2 + y2

2 , B = x2
1 + y2

1 − x1x2 − y1y2 and
C = x2y1−x1y2. We can check easily, sinω0τ

∗
1 > 0, cosω0τ

∗
1 < 0, sin2ω0τ

∗
1 < 0

and cos2ω0τ
∗
1 > 0.

To compute the sign of
dRe[λ(τ∗1 )]

dτ1
, from the equation (16), we have (P ′1(λ) +

P ′2(λ)e−λτ1+P ′3(λ)e−2λτ1−2P3(λ)τ1e
−2λτ1−τ1e−λτ1P2(λ)) dλdτ1 = −λe−τ1λP2(λ)−

2λP3(λ)e−2λτ1 = 0.
Hence,

( dλdτ1 )−1 =
P ′1(λ)+P ′2(λ)e−τ1λ+P ′3(λ)e−2λτ1

λ(P2(λ)e−τ1λ+2P3(λ)e−2λτ1 )
− τ1

λ .

sign{d(Reλ)
dτ1
}λ=iω0

= sign{Re( dλdτ1 )−1}λ=iω0
= signRe 1

ω0Λ{−µ
2
pω

3
0(2µ2

p+3ω2
0)−

α2β2S2
0µ

2
pω0+µ2

pω
2
0(µpω

2
0+2αβS0(3γ−µp)+αβS0µp)sinω0τ

∗
1 +µ2

pω
2
0(−ω(2µ2

p+

3ω2
0) +αβS0(6ω0 + 4(µp− γ)−ω2

0))cosω0τ
∗
1 + 2µ2

pω
2
0αβS0(3γ−µp)sin2ω0τ

∗
1 +

2µ2
pαβS0ω0(3ω2

0 + 2(µp − γ))cos2ω0τ
∗
1 }.

Where Λ = x2
1 + y2

1 + x2
2 + y2

2 . Using of the assumptions of the theorem,

Sign{d(Re(λ)
dτ1

}τ1=τ∗1
< 0. This implies that all the roots that cross the imagi-

nary axis at iω0 cross from left to right as τ∗1 decreases. �

By Lemma 6.1, the disease free equilibrium point is unstable for 0 < τ1 ≤ τ∗1
and is stable for τ1 > τ∗1 . Therefore, Hopf bifurcation is occurred at a critical
value of the time delay τ1 = τ∗1 .
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Appendix B

To approximate the parameters, the method described in [2] is used. we
assume that the time delay, τ2, is zero. Let τ1 = τ , the model (1) is discretized
and the following equations are written.

E(k + 1) = E(k) + γM(k)− βE(k − τ),
L(k + 1) = βE(k − τ) + L(k)− αL(k − τ)(S(k) + I(k)),

P (k + 1) = αL(k − τ)(S(k) + I(k))− µPP (t− τ1)− γ1P (t),
M(k + 1) = µPP (k − τ) + (1− λ1)M(k)− µMM(k),

S(k + 1) = λ2S(k)(1− S(k)
K )− νS(k)L(k)− µSS(k),

I(k + 1) = νS(k)L(k)− ωL(k)I(k)− µII(k).

(18)

This system can be linearized around the equilibrium point G1, which is defined
as the equilibrium point where no medfly is presented in garden. One knows
that a difference equation with delay is of the form:

x(k + 1) = A(p)x(k) +Bx(k − τ), x(k − τ) = 0, when k − τ ≤ 0

For example let k = 4, and τ = 2 then:
x(1) = Ax(0),
x(2) = A2x(0),
x(3) = [A3 +B]x(0),
x(4) = [A4 + (AB +BA)]x(0),
x(5) = [A5 + (A2B +ABA+BA2)]x(0),
x(6) = [A6 + (A3B +A2BA+ABA2 +BA3) +B2]x(0),
.
.
.
x(11) = [A11 + (A8B +A7BA+ · · ·+BA8) + (A5B2 +A4B2A+ ...+B2A5) +
(A3BA2B+A2BA3B+A2BA2BA+...+BABA4)+(B3A2+B2A2B+BA2B2+
A2B3)]x(0).
In the problem, this linear system is of the type x(k+1) = A(p)x(k)+B, where

A(p) =


1 0 0 γ
0 1 0 0
0 0 1− γ1 0
0 0 0 1− λ1 − µM

 ,

B =


−β 0 0 0
β −α(S(t) + I(t)) 0 0
0 α(S(t) + I(t)) −µP 0
0 0 µP 0


To solve the estimation problem, we rewrite the system 6. x(k+1) = M ′(k)p+
N(k − τ) where
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M ′(k) =


dE
dγ1

dE
dλ1

dL
dγ1

dL
dλ1

dP
dγ1

dP
dλ1

dM
dγ1

dM
dλ1

 =


0 0
0 0

−p(k) 0
0 −M(k)

.

Notice that p is the parameter matrix, and p(k) is the value of parameters
in the stage k. In the other words:

p =

[
γ1

λ1

]
, N(k − τ) =


N1(k − τ)
N2(k − τ)
N3(k − τ)
N4(k − τ)


Now let x(k+ 1) = M ′(k)p+N(k− τ) and then N(k− τ) = x(k+ 1)−M ′(k)p.

x(k + 1) =


E(k + 1)
L(k + 1)
P (k + 1)
M(k + 1)

 ,M ′(k)p =


0 0
0 0

−p(k) 0
0 −M(k)

× [γ1

λ1

]
.

From the initial difference equations, one has:

x(k + 1) =


E(k) + γM(k)− βE(k − τ)

βE(k − τ) + L(k)− αL(k − τ)(S(k) + I(k))
αL(k − τ)(S(k) + I(k))− µPP (k − τ) + P (k)(1− γ1)

µPP (k − τ) + (1− λ1)M(k)− µMM(k)

.

Hence the matrix N(k − τ) can be obtained as follows:

N(k − τ) =


E(k) + γM(k)− βE(k − τ)

βE(k − τ) + L(k)− αL(k − τ)(S(k) + I(k))
αL(k − τ)(S(k) + I(k))− µPP (k − τ) + P (k)

µPP (k − τ) +M(k)− µMM(k)


Let ob(k) be the experimental data set in the stage k, and define:

e(k) = (ob(k)− x(k)), k = 1, 2, ...,K and eK = column(e(k))Kk=1

d(k) = ob(k)−N(k − τ), k = 1, 2, ...,K and dk = column(d(k))Kk=1

HK = column(e(k))Kk=1 and E(k − τ) = L(k − τ) = P (k − τ) = 0, where
k ≤ τ .

d(1)−N(0) =


E(1)
L(1)
P (1)
M(1)

−

E(1) + γM(1)

L(1)
P (1)

M(1)− µMM(1)

 =


−γM(1)

0
0

µMM(1)

,

...

d(τ) = ob(τ)−N(0) =


E(τ)
L(τ)
P (τ)
M(τ)

−

E(τ) + γM(τ)

L(τ)
P (τ)

M(τ)− µMM(τ)

 =


−γM(τ)

0
0

µMM(τ)

,
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...

d(τ + 1) = ob(τ + 1)−N(1) =
E(τ + 1)
L(τ + 1)
P (τ + 1)
M(τ + 1)

−


E(τ + 1) + γM(τ + 1)− βE(1)
βE(1) + L(τ + 1)− αL(1)(S(τ + 1) + I(τ + 1))
αL(1)(S(τ + 1) + I(τ + 1))− µPP (1) + P (τ + 1)

µPP (1) +M(τ + 1)− µMM(τ + 1)

 =


βE(1)− γM(τ + 1)

αL(1)(S(τ + 1) + I(τ + 1))− βE(1)
−αL(1)(S(τ + 1) + I(τ + 1))− µPP (1)

−µPP (1) + µMM(τ + 1)

.

...

d(τ +m) =

 βE(m)− γM(τ +m)
αL(1)(S(τ +m) + I(τ +m))− βE(m)

−µPP (m) + µMM(τ +m)

, m ≥ 1.

HK = column(M ′(k)Kk=1) =



0 0
0 0

−p(0) 0
0 −M(0)
...

...
0 0
0 0

−p(K) 0
0 −M(K)



Therefore, for K observations one can survey the parameter vector p that op-
timizes the function JK(p), where JK(p) is calculated as follows:

JK(p) = 1
2

∑K
k=1 e(k)

T
e(k) = 1

2eK
T eK = 1

2 (dK −HKp)
T

(dK −HKp), where
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dK =



d(1)
d(2)

...
d(τ)

d(τ + 1)
...

d(K)


=



−γM(1)
0
0

µMM(1)
...

−γM(τ)
0
0

µMM(τ)
βE(1)− γM(τ + 1)

αL(1)(S(τ + 1) + I(τ + 1))− βE(1)
−αL(1)(S(τ + 1) + I(τ + 1))− µPP (1)

µPP (1)− µMM(τ + 1)
...

βE(m)− γM(τ +m)
αL(m)(S(τ +m) + I(τ +m))− βE(m)
−αL(m)(S(τ +m) + I(τ +m))− µPP (m)

µPP (m)− µMM(τ +m)



,

K = τ +m.

In order to find the parameter vector, one should acquire HKp.

HKp =



0 0
0 0

−p(0) 0
0 M(0)
...

...
0 0
0 0

−p(K − 1) 0
0 M(K − 1)



[
γ1

λ1

]
=



0
0

−γ1p(0)
λ1M(0)

...
0
0

−γ1p(K − 1)
λ1M(K − 1)


.

Now let’s obtain dK −HKp as follows:
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dK −HKp =



−γM(1)
0

γ1P (0)
µMM(1)− λ1M(0)

...
−γM(τ)

0
γ1P (τ)

µMM(τ)− λ1M(τ − 1)
βE(1)− γM(τ + 1)

αL(1)(S(τ + 1) + I(τ + 1))− βE(1)
−αL(1)(S(τ + 1) + I(τ + 1))− µPP (1) + γ1P (τ)

µPP (1)− µMM(τ + 1)− λ1M(τ)
...

βE(m)− γM(τ +m)
αL(m)(S(τ +m) + I(τ +m))− βE(m)

−αL(m)(S(τ +m) + I(τ +m))− µPP (m) + γ1P (τ +m− 1)
µPP (m)− µMM(τ +m)− λ1M(τ +m− 1)


and

HT
KHKp =

[
γ1

∑K−1
k=1 p(k)2

λ1

∑K−1
k=1 M(k)2

]
.

Now it’s remained to compute HT
KdK .

HT
KdK =

[
(−αL(1)(S(τ + 1) + I(τ + 1))− µPP (1))p(τ)

M + [−µPP (1) + µMM(τ + 1)]M(τ)

]
+ ...+(−αL(m)(S(τ +m) + I(τ +m))− µP p(m))P (τ +m− 1)

(−µPP (m) + µMM(τ +m))M(τ +m− 1)


where M = µM (M(0)M(1) +M(1)M(2) + ...+M(τ − 1)M(τ)).
∂JK(p)
∂p = HT

KHKp−HT
KdK =[

γ1

∑K−1
k=0 p(k)

2 − αa
λ1

∑K−1
k=0 M(k)

2 − µM
∑τ−1
k=0 M(k)M(k + 1)− b

]
where a =

∑m
k=1(L(k)(S(k + τ) + I(k + τ)) + µPP (k))P (k + τ − 1) and

b =
∑m
k=1(µPP (k)− µMM(k + τ))M(k + τ − 1).

Hence one has λ1, γ1 as above:

γ1 =
α
∑m
k=1(L(k)(S(k+τ)+I(k+τ))+µPP (k))P (k−τ)∑K

k=0−1P (k)2
,

λ1 =
µM

∑τ−1
k=0 M(k)M(k−1)+

∑m
k=1(−µPP (k)+µMM(k+τ))∑K−1

k=0 M(k)2
.
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HT
KHK =

[∑K−1
k=0 p(k)2 0

0
∑K−1
k=0 M(k)2

]
.

Therefore one knows that HT
KHK , is non-singular, HT

KHKp = HT
KHK , and

then p = (HT
KHK)−1(HT

KHK), and hence p exists and is unique.

Definition 6.2. If A is a square matrix, then the spectral norm of A, is defined
by:

‖A‖2 = (maximum of eigenvalues of ATA)
1
2 .

Definition 6.3. Let A be a square matrix, and λ1, λ2, ..., λn be its eigenvalues.
Then the spectral radius of A is defined as follows:

ρ(A) = max(|λ1|, |λ2|, ..., |λn|).

Theorem 6.4. [2]Let SK = HT
KHK , pK = S−1

K HT
KdK , and let x(k + 1) =

Ax(k) +Bx(k − τ). If ‖dK‖2 ≤ 1
ρ(S−1

K

)(ρ(SK))
−1
2 , then ‖ pK ‖2< 1.

One can see that

SK = HT
KHK =

[∑K−1
k=0 (p(k))2 0

0
∑K−1
k=0 (M(k))2

]
Let E2 =

∑K−1
k=0 (p(k))2, F 2 =

∑K−1
k=0 (M(k))2, and then

pK = S−1
K HT

KdK = 1
F 2

[
0

µMM(0)M(1) + ...+ µMM(τ − 1)M(τ)

]
+

1
F 2

[
0

n(1)M(τ + 1) + ...+ n(m)M(τ +m)

]
where n(i) = µP p(i)− µMM(τ + i) for i = 1, ...,m.
pTKpK = 1

F 4 [(µM
∑τ
k=1M(k − 1)M(k)) +

∑m
k=1 n(k)M(τ + k)]2.

One may remember that K = τ +m,F 2 =
∑K−1
k=1 M(k)

2
.

Corollary 6.5. [2] If [(µM
∑τ
k=1M(k−1)M(k))+

∑m
k=1 n(k)M(τ+k)]2 ≤ F 4.

Then ‖pK‖2 < 1

Now by assuming ‖pK‖2 < 1, one can add one observation ob(k + 1), and
show that there is a fitting between the mathematical model to the k+ 1 data
of the observed data set.
HT
K+1HK+1 = HT

KHK +M ′
T

(K)M ′(K),

and HT
K+1dK+1 = HT

KdK +M ′
T

(K)d(K + 1).
On the other hand,

pK+1 = S−1
K+1H

T
K+1dK+1 = S−1

K+1(HT
KdK +M ′

T
(K)d(K + 1))

= S−1
K+1SKpK + S−1

K+1M ′
T (K) = AKpK +BK.
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Where
AK = S−1

K+1SK
and
BK = S−1

K+1M
′T (K)d(K + 1).

Then
pK+1 = AKpK +BK ,K ≥ 1.
Easily one can acquire that:

pK = AK−1...Ak0pk0 +
∑K−1
i=k0+1(AK−1AK−2...Ai+1Bi), if K > k0, and pK =

pk0 , if K = k0.
The spectral radius of AK , that has been defined as:

ρ(AK) = max{|λ1|, ..., |λn|}, where λi is the eigenvalue of AK .

If ρ(AK) < 1, for all K > k0, since SK is symmetric, ρ(AK−1...Ak0) <

ΠK−1
i=k0

ρ(Ai) < 1.
Therefore AK−1...Ak0 is asymptotically stable and hence pK exists, and if BK
is bounded , then pK is bounded.

Theorem 6.6. [2]Let pK = AK−1...Ak0pk0 +
∑K−1
j=k0

AK ...Aj+1Bj ,K > k0.

Furthermore let ρ(AK) < 1, for all K > k0, and ‖ob(K + 1)− x(K + 1)‖2 <
ε

ρ(S−1
K+1)ρ(MT (K)M(K))

, for some ε > 0. Then ‖pK+1 − pK‖2 < ε.
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