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Abstract. In this paper, we examine the dynamical characteristics of

actions on the set of compact subsets within the phase space. Specif-
ically, if X is identified as a uniform space, we denote K (X) as the

collection of non-empty closed subsets of X equipped with the Hausdorff
topology. If f represents a continuous self-map on X, there exist several

naturally induced continuous self-maps on K (X). The principal focus of

our investigation is the relationship between the dynamics of f and these
induced mappings. For this purpose, we present topological notions of

sensitivity and mixing properties pertinent to dynamical systems derived

from uniform hyperspaces.
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1. Introduction

A discrete dynamical system is typically characterized by a compact metric
space X alongside a continuous function f that maps X to itself. Many sig-
nificant properties of these systems are expressed in strictly topological terms,
with transitivity, recurrence, and nonwandering points serving as pertinent ex-
amples. Conversely, other properties are defined in terms of the metric or the
availability of an equivalent metric within the space, such as sensitivity, chain
transitivity and recurrence, shadowing, and expansivity.

In certain instances, researchers prefer to investigate dynamical systems
within broader topological frameworks. Uniform structures provide a method
to generalize the notion of distance to topological spaces that do not necessar-
ily possess a metric structure. By endowing a completely regular topological
space with a uniformity, researchers can transcend the constraints imposed by
a distance-based methodology in the topological theory of dynamical systems.
The introduction of uniformity offers a systematic approach for regulating the
distances between points within the space, even in the absence of a definable
metric. Consequently, this allows for the articulation and examination of dy-
namical concepts within a more inclusive context.
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Utilizing this framework, researchers have achieved notable advancements
in the generalization of various dynamical concepts to uniform spaces. For in-
stance, Das et al. [5] have broadened the definitions of shadowing and chain
recurrence to encompass topological spaces. Wu and Chen [1] established that
a dynamical system situated in a uniform space is topologically chain mix-
ing if and only if it possesses the property of being totally topologically chain
transitive. Further findings include the demonstration that a dynamical sys-
tem exhibiting ergodic shadowing is topologically chain transitive, and that
a point-transitive dynamical system within a Hausdorff uniform space is ei-
ther almost mean equicontinuous or mean sensitive [11]. Researchers have also
made strides in the classification of topologically transitive dynamical systems,
introducing innovative concepts such as sensitivity and syndetic sensitivity for
non-autonomous dynamical systems situated in uniform spaces [9]. Moreover,
the topological concept of average shadowing property has been articulated,
with evidence presented to suggest that it implies topological chain transitiv-
ity [8].

The investigation of hyperspaces has its roots in early 20th century math-
ematics, with pioneering work by Hausdorff, Vietoris, Hahn, and Kuratowski.
Bauer and Sigmund’s 1975 contributions marked substantial progress, partic-
ularly in their examination of mappings between probability measures and hy-
perspaces. While research activity in hyperspace dynamics declined during the
late 1900s, there has been renewed interest in recent years, with numerous
studies utilizing Hausdorff metric topology approaches.

When considering a dynamical system (X, f) where X is a compact metric
space and f is continuous, we naturally obtain associated mappings on related
spaces. Important relationships exist between the system’s dynamical features,
the topological structure of its inverse limit space, and the corresponding shift
map - connections that have been thoroughly explored in the literature [4, 6]

For any continuous map f on a compact metric space X, there is a canonical
induced mapping on the hyperspace K (X) of nonempty closed subsets of X.
This induced mapping remains continuous when K (X) is endowed with the Vi-
etoris topology. This construction immediately raises a fundamental question:
how do the dynamical properties of the original system (individual dynamics)
relate to those of the induced system (collective dynamics)?

Recent years have seen growing attention to the study of hyperspace map-
pings [2, 6], building upon the foundational work of Bauer and Sigmund [3].

Their results demonstrate that the dynamics of (K (X), f̃) exhibit greater com-
plexity than those of the base system (X, f), as evidenced by various examples
and theorems. These observations provide compelling motivation for further
investigation of hyperspace dynamical systems.

The interplay between the orbital behaviors of the systems (K (X), f̃) and
(X, f) underscores the manner in which dynamics elucidate orbit evolution
over time, particularly in relation to asymptotic behavior and resilience to
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minor perturbations. Under specific conditions, (X, f) and its corresponding

subsystem situated within (K (X), f̃) can be topologically conjugated by uti-
lizing suitable hyperspace topologies. An invariant set derived from the original
system is transformed into a fixed point within the hyperspace framework.

Definition 1.1. Let X be a non-empty set. A uniformity U on the set X is
a family of subsets of the product X × X such that the following conditions
hold:

(1) For any E1, E2 ∈ U , the intersection E1 ∩ E2 is also contained in U ,
and if E1 ⊂ E2 and E1 ∈ U , then E2 ∈ U ;

(2) Every set E ∈ U contains the diagonal ∆X = {(x, x) : x ∈ X};
(3) If E ∈ U , then E−1 = {(y, x) : (x, y) ∈ E} ∈ U ;

(4) For any E ∈ U there exists Ê ∈ U such that Ê ◦ Ê ⊂ E, where

Ê ◦ Ê = {(x, y) : (x, z) ∈ Ê, (z, y) ∈ Ê, for some z ∈ X}.
The set X with a uniformity U on it is called a uniform space and denoted

by (X,U ) [7].

A subfamily B of U is called a base for U if each member of U contains a
member of B. Any compact topological space can be considered as a uniform
space by equipping it with the uniform structure induced by the open coverings.
This uniform structure allows us to study uniform properties of functions on
compact topological spaces. An element of U is called an entourage of X. An
entourage E is said to be symmetric if E = E−1. One can easily check that
symmetric entourages of U constitute a base for U . Let (X,U ) be a uniform
space. For x ∈ X and E ∈ U , the set E[x] = {y ∈ X : (x, y) ∈ E} is called
the cross-section of E at the point x.

Let τU = {A ⊂ X : for each a ∈ A, there exists E ∈ U with E[a] ⊂ A},
then τU is a topology on X defined by the uniformity U that is called the
uniform topology on X. A mapping f : X −→ Y from a uniform space X
into a uniform space Y is said to be uniformly continuous if the inverse image
(f × f)−1(E) is an entourage of X for each entourage E of Y .

2. Expansivity on uniform spaces

Certain dynamical systems, like the doubling map on the circle, possess the
characteristic that nearby points diverge over a positive time interval. Scholars
have developed numerous methods to characterize this divergence of forward
orbits. In our context, a continuous map or homeomorphism defined on a
uniform space is deemed expansive if two points become separated by more
than a specified distance after some time. Let f : X → X be a map on a
uniform space (X,U ) and let D be an entourage of X. Define the following
notations:

Γ+(x,D, f) =

(⋂
i∈N

F−i(D)

)
[x]; and Γ(x,D, f) =

(⋂
i∈Z

F−i(D)

)
[x],
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where F = f × f .

Definition 2.1. We say that a map f : X → X on a uniform space (X,U ) is
positively expansive (resp., expansive) if there exists an entourage D such that
Γ+(x,D, f) = {x} (resp Γ(x,D, f) = {x} ) for all x ∈ X.

It is straightforward to see that f : X → X is positively expansive if there
exists an entourage D such that for all distinct points x, y ∈ X there exists n ≥
0 such that (fn(x), fn(y)) /∈ D. We shall call such a D a positive expansivity
neighborhood (resp., expansivity neighborhood) of f . As one of the notions
that are weaker than expansivity, we capture the notion which is called sensitive
dependence on initial conditions.

Definition 2.2. [10] Given an entourage E ∈ U , a point x ∈ X is said to be
an E-sensitive point of f if for any entourage U ∈ U , there exist y, z ∈ U [x]
and n ∈ N such that (fn(y), fn(z)) /∈ E. We denote by sen(E, f) the set of
all E-sensitive points of f and define sen(f) =

⋃
E∈U sen(f,E). The map f is

said to be topologically sensitive if sen(f) = X.

It is easy to see that (X, f) is topologically sensitive if there exists D ∈ U
such that for any x ∈ X and any E ∈ U , there exists y ∈ E[x] and n ∈ N such
that (fn(x), fn(y)) /∈ D.

Definition 2.3. [10] A continuous map f : (X,UX) → (Y,UY ) is called
perfect if it is a closed map and f−1(y) is compact for all y ∈ Y .

Definition 2.4. [11] Let f : X −→ X be a homeomorphism of a uniform com-

pact Hausdorff space. Points x, y ∈ X are called proximal if closure O((x, y))
of the orbit of (x, y) under f × f intersects the diagonal ∆ = {(z, z) ∈ X ×X :
z ∈ X}.

Every point is proximal to itself. That is, O((x, x)) ∩ ∆ 6= ∅. If (X,U ) is a
compact uniform space and let m ∈ N, then x, y ∈ X are proximal, if for any
entourage E ∈ U there exists integer nk > m such that (fnk(x), fnk(y)) ∈ E.

Definition 2.5. [11] If two points x, y ∈ X are not proximal, i.e., if O((x, y))∩
∆ = ∅, they are called distal.

A homeomorphism f : X −→ X is distal if every pair of distinct points x, y ∈ X
is distal. If (X,U ) is a compact Hausdorff space, then points x, y ∈ X are distal
if there is an entourage E ∈ U such that (fn(x), fn(y)) /∈ E for all n ∈ Z.

Definition 2.6. A homeomorphism f of a compact uniform space (X,U )
is said to be equicontinuous, if for any entourage E ∈ U , there exists an
entourage D ∈ U such that y ∈ D[x] implies that (fn(x), fn(y)) ∈ E for all
n ∈ Z.
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Lemma 2.7. Let X be a uniform space. Let M be a subset of X × X, then
M = ∩{U ◦M ◦ U : U ∈ U }. In particular M = ∩{U ◦M ◦ U : U ∈ U }.

Proof.

(x, y) ∈M ⇔ (V [x]× V [y]) ∩M 6= ∅ for each symmetric member V ofU

⇔ (a, b) ∈ V [x]× V [y] for some (a, b) ∈M
⇔ (x, y) ∈ V [a]× V [b] for some (a, b) ∈M
⇔ (x, y) ∈ ∪(a,b)∈MV [a]× V [b]

⇔ (x, y) ∈ V ◦M ◦ V for every symmetric member V ofU .

Also if U ∈ U is arbitrary, then there is a symmetric member V of U such
that V ⊂ U . Hence, (x, y) ∈M ⇔ (x, y) ∈ ∩{U ◦M ◦ U : U ∈ U }. �

Proposition 2.8. Let f be a homeomorphism of an infinite compact Hausdorff
uniform space X. Then for every entourage E ∈ U there are distinct points
x0, y0 ∈ X such that (fn(x0), fn(y0)) ∈ E for all n ∈ N0.

Proof. Fix E ∈ U . Let A be the set of natural numbers m for which there is
a pair x, y ∈ X such that

(x, y) /∈ E and (fn(x), fn(y)) ∈ E for n = 1, . . . ,m.(1)

Let M = 0, if A = ∅, and M = supA, if A 6= ∅.
If M = ∞, then for every m ∈ N there is a pair xm, ym satisfying 1 .
By compactness, there is a sequence mk ∈ X such that for every mk > k,
xmk

−→ x′, ymk
−→ y′. Since xm, ym is distinct points, hence by 1 (x′, y′) /∈ E.

To do this, choose Ê such that Ê3 ⊂ E, since xmk
−→ x′ and ymk

−→ y′

there is K such that for every k ≥ K, (xmk
, x′) ∈ Ê, (ymk

, y′) ∈ Ê. For

the sake of contradiction, let (x′, y′) ∈ Ê, then (xmk
, ymk

) ∈ Ê ◦ Ê ◦ Ê ⊂ E,

which is contradiction, hence (x′, y′) /∈ Ê. Note that f j is continuous and
(f j(xmk

), f j(ymk
)) ∈ E for every j ∈ N. For any U ∈ U there exists K0 ∈ N

such that (f j(x′), f j(xmk
)) ∈ U and (f j(y′), f j(ymk

)) ∈ U for all k ≥ K0.
Hence (f j(x′), f j(y′)) ∈ U ◦ E ◦ U . Since U is arbitrary by Lemma 2.7 we
have (f j(x′), f j(y′)) ∈ E. Thus, x0 = f(x′), y0 = f(y′) are the desired
points. Suppose now that M is finite. Since any finite collection of iterates
of f is equicontinuous, there is an entourage D ∈ U such that if (x, y) ∈ D,
then (fn(x), fn(y)) ∈ E for 0 ≤ n ≤ M , the definition of M implies that
(f−1(x), f−1(y)) ∈ E. For see this suppose that (f−1(x), f−1(y)) /∈ E then
by 1 (fn+1(f−1(x)), fn+1(f−1(y))) ∈ E for n = 1, . . . , n + 1, which is contra-
diction the maximality of M . By induction we see that (f−j(x), f−j(y)) ∈ E
for j ∈ N whenever (x, y) ∈ D. Let D̂ ∈ U such that 2D̂ ⊂ D. Since X is

compact and {IntX(D̂[x])} is an open cover of X, there exist x1, x2, . . . , xm
in X such that β = {IntX(D̂[xj ]))}mj=1 is a finite subcover with cardinality
m. Since X is infinite, we can choose a set F ⊂ X to be any collection of
m+ 1 points. For each integer n the set fn(F ) has m+ 1 points and so by the
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pigeon-hole principle, for each j ∈ Z, there exists a pair aj , bj ∈ F such that
f j(aj) and f j(bj) belong to the same subcover Bj ∈ β, so (f j(aj), f

j(bj)) ∈ D.
Thus for any n ≤ j, (fn(aj), f

n(bj)) ∈ E. Since F is finite, there are distinct
x0, y0 ∈ F such that aj = x0 and bj = y0 for infinitely many positive j and
hence (fn(x0), fn(y0)) ∈ E for all n ≥ 0. �

Proposition 2.9. Let f be an expansive homeomorphism of an infinite compact
Hausdorff uniform space X. Then X contains a pair of distinct proximal points.

Proof. . Suppose that D is the expansive entourage of f . Choose E ∈ U such
that E ⊂ D. Then by the Proposition 2.8 there exist distict points x, y ∈ X
such that (fn(x), fn(y)) ∈ E for all n ≥ 1. Suppose that O((x, y))∩∆ = ∅. By
compactness we can assume that fn(x)→ x′ and fn(y)→ y′, then fm+n(x)→
fm(x′) and (fn+m(y)→ fm(y′) for all m ∈ Z. Let U ∈ U and choose large n ≥
−m such that (fn+m(x), fm(x′)) ∈ U and fn+m(y), fm(y′)) ∈ U . Therefore
(fm(x′), fm(y′)) ∈ U ◦ E ◦ U and by Lemma 2.7 we have (fm(x′), fm(y′)) ∈
E ⊂ D which contradicts the definition of D. �

Corollary 2.10. Let f be an expansive homeomorphism of an infinite compact
Hausdorff uniform space X. Then f is not distal.

Proposition 2.11. Let f be an equicontinuous homeomorphism of a compact
Hausdorff uniform space X. Then f is distal.

Proof. Suppose the equicontinuous homeomorphism f : X −→ X is not distal.
Then there is a pair of distinct proximal points x, y ∈ X and let m ∈ N, so
for any entourage E ∈ U there is integer nk > m such that (fnk(x), fnk(y)) ∈
E. Let xk = fnk(x) and yk = fnk(y). Suppose that y ∈ E[x], then for
any entourage D ∈ U , there is some k ∈ N such that (xk, yk) ∈ D, but
(f−nk(xk), f−nk(yk)) ∈ E, so f is not equicontinuous. �

3. Induced dynamics

In a uniform space (X,U ), we define hyperspaces of X as follows:

K (X) = {A ⊂ X : A is closed and non− empty},
C (X) = {A ∈ K (X) : A is compact},
Fn(X) = {A ∈ K (X) : A has at most n points}, n ∈ N,

F (X) =

∞⋃
n=1

Fn(X)− the collection of all finite subsets of X.

Let (X,U ) be a uniform space and E ∈ U . If

2E = {(A,A′) ∈ K (X)×K (X) : A ⊂ E[A′], A′ ⊂ E[A]},
then it is easy to prove that the set B = {2E : E ∈ U } is a base for a uniformity
on K (X), that denoted by

2U = {U ⊂ K (X)×K (X) : there exists E ∈ U such that 2E ⊂ U}.
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It is known that the topology induced by 2U coincides with the Vietoris topol-
ogy. The Vietoris topology on K (X) is generated by the following subbase:

1. Upper Vietoris topology : For each open U ⊆ X, define

U+ = {A ∈ K (X) | A ⊆ U}.
These sets form the upper Vietoris topology.

2. Lower Vietoris topology : For each open U ⊆ X, define

U− = {A ∈ K (X) | A ∩ U 6= ∅}.
These sets form the lower Vietoris topology.

The Vietoris topology is the smallest topology containing both the upper
and lower Vietoris topologies. A basis for this topology consists of finite inter-
sections of such sets:

B =

{
n⋂
i=1

U−i ∩ V
+
∣∣∣ U1, . . . , Un, V open in X

}
.

If (X, d) is a compact metric space, the Vietoris topology coincides with the
topology induced by the Hausdorff metric:

dH(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
.

If X is Hausdorff, then K (X) with the Vietoris topology is also Hausdorff.
If X is compact, then K (X) is compact under the Vietoris topology. If X is
a compact metric space, the Vietoris topology is metrizable via the Hausdorff
metric.

Let f : X −→ X be a map. We define f̃ : K (X)→ K (X) by f̃(A) = f(A)

for all A ∈ K (X). Then (K (X), f̃) , (F (X), f̃) and (C (X), f̃) are called
induced dynamical systems. If f : X → X is continuous, then the induced
map f̃ : K (X) → K (X) (where f̃(A) = f(A)) is also continuous in the

Vietoris topology. Also f̃ : F (X) → F (X) and f̃ : C (X) → C (X) are well-
defined continuous maps.
This contributes to our understanding of the interplay between individual and
collective dynamics in dynamical systems and provides valuable insights into
the behavior of induced maps on uniform hyperspaces. A dynamical system
(X, f) is called topologically transitive if Nf (U, V ) = {n ∈ N | U ∩f−n(V ) 6= ∅}
is a non-empty set for any pair of nonempty open subsets U , V of X. A
dynamical system (X, f) is called topologically weakly mixing if the product
system (X × X, f × f) is topologically transitive. Akin et.al. [2] studied the
dynamical properties of actions on the space of compact subsets of the phase
space. They studied the properties of transitive points of the induced system
(K (X), f̃) both topologically and dynamically. They proved the following
main theorem.

Theorem 3.1. Let C be a Cantor set. If f is a continuous map on a metric
space X, then the following are equivalent:
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(1) (X, f) is weakly mixing.

(2) (C, f̃) is topologically transitive.

Wang et.al. [10] proved that the sensitivity of the induced hyperspace system
on metric spaces is equivalent to the collective sensitivity of the original system.

Example 3.2. [10] Let (Σ(p), σ) be the full two-sided p-shift, where

Σ(p) = {1, 2, . . . , p}Z = {s = (. . . , s−1, s0, s1, . . .)|sn ∈ {1, 2, . . . , p}},
and σ(s) = t where tn = sn+1. The metric d̃ of (Σ(p), σ) is defined by

d̃(s, t) =

∞∑
n=−∞

δ(sn, tn)

2|n|
,

where δ(a, b) = 1 if a 6= b and δ(a, b) = 0 if a = b.
Let X = Σ(p) \ {(. . . , 1, 1, 1, . . .)} and f = σ|X . As Σ(p) is compact, X is

Hausdorff locally compact second countable and d = d̃|X×X is a metric. Since
(Σ(p), σ) is weakly mixing and (X, f) is a dense subsystem of (Σ(p), σ), (X, f)
is weakly mixing. Since (Σ(p), σ) has a dense set of periodic points, so does
(X, f). By Corollary 4.4 in [10], (X, f) is collectively sensitive.

Theorem 3.3. [10] Let (X, f) be a dynamical system and Y be a dense subset
of X, then (X, f) is sensitive if and only if (Y, f) is sensitive.

Theorem 3.4. [10] Let (X, f) be a dynamical system. Then (C (X), f̃) is

sensitive if and only if (F (X), f̃) is.

Proposition 3.5. Let (X, f) be a dynamical system. Then (X, f) is sensitive if

and only if (F (X), f̃) is.

Proof. If (F (X), f̃) is sensitive then obviously (X, f) is sensitive. Conversely
suppose that (X, f) is sensitive with sensitivity entourage D. Let E ∈ U be
symetric and A = {x1, · · · , xn} ∈ F (X), then for any i, there exists yi ∈ E[xi]
and ni such that (fni(xi), f

ni(yi)) /∈ D. Therefore B = {y1, · · · , yn} ∈ F (X)

and there exists n ∈ N such that (f̃n(A), fn(B)) /∈ 2D. Hence 2D is a sensitivity

entourage for (F (X), f̃). �

The concepts of collective sensitivity and compact-type collective sensitivity
are introduced as stronger conditions than traditional sensitivity for dynamical
systems and Hausdorff locally compact second countable systems, respectively.
Let (X, f) be a dynamical system, and let D ∈ U be an entourage. Dy-
namical system (X, f) is called collectively sensitive with collective sensitivity
entourage D, if for any finitly many distinct points x1, x2, . . . , xn and any en-
tourage E ∈ U , there exist the same number of distinct points y1, y2, . . . , yn
in X and a natural number k ∈ N such that ∪ni=1(xi, yi) ⊂ E and there exist j
with 1 ≤ j ≤ n such that

∪ni=1(fk(xi), f
k(yj)) ⊂ X ×X \D
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or
∪ni=1(fk(xj), f

k(yi)) ⊂ X ×X \D.

Theorem 3.6. Let (X, f) be a dynamical system. If (X, f) is weakly mixing,
then (X, f) is collectively sensitive.

Proof. Let p1 , p2 be two distinct points in X. Then there exists U ∈ U
such that U [p1] ∩ U [p2] = ∅. choose D ∈ U such that D10 ⊂ U . D[p1]
and D[p2] are disjoint.We show that f is collectively sensitive with collective
sensitivity entourage D. Let x1, x2, · · · , xn be distinct points in X and E ∈
U .Let {Ui}ni=1 ⊂ U . Since f is weakly mixing, f2n is topologically transitive.
Therefore there exists k ∈ N such that fk(Ui[xi]) ∩D[p1] 6= ∅ and fk(Ui[xi]) ∩
D[p2] 6= ∅ for i = 1, 2, · · · , n. Hence there exist wi, w

′
i ∈ Ui[xi] such that

fk(wi) ∈ D[p1] and fk(w′i) ∈ D[p2]. This implies that (fk(wi), f
k(w′i)) ⊂

X ×X \D8. In particular, we can see that (fk(x1), fk(w1)) ∈ X ×X \D4 or
(fk(x1), fk(w′1)) ∈ X ×X \D4. By adequate selection of yi = wi or yi = w′i
we obtain

⋃n
i=1{fk(x1), fk(yi)} ⊂ X × X \ D. This implies that (X, f) is

collectively sensitive with collective sensitivity entourage D.
�

Theorem 3.7. Let (X, f) be a dynamical system. Then (F (X), f̃) is sensitive
if and only if (X, f) is collectively sensitive.

Proof. Suppose that (F (X), f̃) be sensitive with sensivity entourage D. For
any distinct points x1, x2, . . . , xn of X. Put A = {x1, x2, . . . , xn} and any
entourage E ∈ U , with E2 ∩ {(xi, xj) : 1 ≤ i, j ≤ n and i 6= j} = ∅. By
the assumption, there exist B ∈ F (X) and k ∈ N satisfying (A,B) ∈ 2E and

(f̃k(A), f̃k(B)) /∈ 2D. Since (A,B) ∈ 2E , for any y ∈ B there is only one index
1 ≤ i ≤ n such that (y, xi) ∈ E. Put Bi = {y : y ∈ B and (y, xi) ∈ E} for

1 ≤ i ≤ n. Obviously Bi 6= ∅ for each 1 ≤ i ≤ n. Since (f̃k(A), f̃k(B)) /∈ 2D

we have two cases,

(i) f̃k(B) * D[f̃k(A)]

(ii) f̃k(A) * D[f̃k(B)].

We consider these cases, separately. If Case (i) holds, then there exists
z ∈ Bi satisfying

∪ni=1(fk(z), fk(xi)) ⊂ X ×X \D
for each i, we choose yi ∈ Bi. In particular, choose yi = z. Consequently we
obtain ∪ni=1(xi, yi) ∈ E and there exists an index j with 1 ≤ j ≤ n satisfying

∪ni=1(fk(xi), f
k(yj)) ⊂ X ×X \D.

If case (ii) holds, then there exists an index j with 1 ≤ j ≤ n satisfying

∪y∈B(fk(xj), f
k(y)) ⊂ X ×X \D.

For each i, we choose yi ∈ B, we obtain that ∪ni=1(xi, yi) ⊂ E and ∪ni=1(fk(xj), f
k(yi)) ⊂

X ×X \D. Hence (X, f̃) is collectively sensitive.
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Conversly, let (X, f̃) be collectively sensitive with a collective sensitivity en-
tourage D ∈ U , for any A = {x1, x2, . . . , xn} ∈ F (X) and E ∈ U , there exists
n distinct points y1, y2, . . . , yn of X and k ∈ N such that ∪ni=1(xi, yi) ⊂ E and
there exist index j with 1 ≤ j ≤ n such that ∪ni=1(fk(xi), f

k(yj)) ⊂ X ×X \D
or ∪ni=1(fk(xj), f

k(yi)) ⊂ X × X \ D. Put B = {y1, y2, . . . , yn}. Thus

(A,B) ⊂ 2E and f̃k(B) * D[f̃k(A)] or f̃k(A) * D[f̃k(B)]. This implies

that (f̃k(A), f̃k(B)) /∈ 2D. Therefore (F (X), f̃) is sensitive. �

A point x ∈ X is a minimal point or almost periodic point if the subsystem
(orbf (x), f) is minimal. A dynamical system (X, f) is called pointwise minimal
if all points in X are minimal.

Proposition 3.8. Let (X, f) be a dynamical system. Then the following are
equivalent:

(1) (X, f) is equicontinuous;

(2) (K (X), f̃) is equicontinuous;

(3) (K (X), f̃) is distal;

(4) (K (X), f̃) is pointwise minimal.

Proof. 2⇒ 3 and 3⇒ 4 is clear.
4⇒ 1 Assume that (K (X), f̃) is pointwise minimal. First we claim that (X, f)
is distal. By the sake of contradiction let there exist x, y ∈ X such that (x, y)

is proximal, so O(x, y) ∩∆ 6= ∅. Hence there are z ∈ X such that

(z, z) ∈ O(x, y) = ∩E∈U E ◦ O(x, y) ◦ E

So for each symmetric entourage E there exists n ∈ N such that (fn(x), z) ∈ E
and (fn(y), z) ∈ E. Note that {z} and {x, y} are minimal points in K (X).

Hence {x, y} ∈ orb({z, f̃}) which implies that x = y = z, which is a contradic-
tion, this implies that f is distal.
Now we aim to show that (X, f) is locally almost periodic. Fix any x ∈ X and
any open neighborhood U of x. Take any open set V such that x ∈ V ⊂ V ⊂ U .
Then V ∈ 〈U〉 and since (K (X), f̃) is pointwise minimal, there is a syndetic

set F ⊆ Z such that f̃n(V ) ∈ 〈U〉 for any n ∈ F . That is fnV ⊂ fnV ⊂ U for
all n ∈ F , showing that x is locally almost periodic point, which implies that
(X, f) is equicontinuous.

1⇒ 2 Suppose that f is equicontinuous. We show that f̃ is so. Let 2E ∈ 2U ,
then by equicontinuoity of f there exists an entourage D ∈ U such that
(f × f)i(D) ⊂ E for all i. Assume that A,B ∈ K (X) and (A,B) ∈ 2D,
then A ⊂ D[B] and B ⊂ D[A], therefore we conclude that f i(A) ⊂ E[f i(B)]
and f i(B) ⊂ E[f i(A)] for all i ≥ 0. This implies that (f i(A), f i(B)) ∈ 2E ,
which completes the proof. �
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Example 3.9. Let Σ = {(xj) : xj ∈ {0, 1}, j = 0, 1, 2, · · · }. For a subset J of

N0, the upper density d of J is defined by

d(J) = lim sup
n→∞

1

n
|J ∩ {0, 1, · · · , n− 1}|.

For each ε > 0, let

Uε = {
(
(xj), (yj)

)
∈ Σ× Σ : d ({j ≥ 0 : xj 6= yj}) < ε}.

Then the family B = {Uε : ε > 0} is a base for a non-metrizable uniformity U
on Σ. Let σ : Σ→ Σ be the shift map. Then σ : (Σ,U )→ (Σ,U ) is uniformly
continuous, and furthermore for any ε > 0 and any k ∈ N we have

(σ(x), σ(y)) ∈ Uε ⇔ (x,y) ∈ Uε
This fact shows that σ : (Σ,U ) → (Σ,U ) is equicontinuous. Consider two
points x = (0, 0, 0 · · · ) and y = (yj) with

yj =

{
1 j = 2n for some n
0 o.w.

Then points x and y are proximal. This implies that σ : (Σ,U ) → (Σ,U ) is
not distal.

conclusion

In this work, we have studied sensitivity in dynamical systems on hyper-
spaces, characterizing how chaotic behavior extends from the base space to
its hyperspace. Our results establish sufficient conditions under which sensi-
tivity is preserved, contributing to the understanding of complex dynamics in
set-valued frameworks.

Furthermore, we have introduced a generalization to collective sensitivity in
this setting, laying the groundwork for future research. Subsequent works will
explore deeper connections between collective sensitivity, entropy, and other
chaos-related properties in hyperspace dynamics, as well as potential applica-
tions in control and synchronization of set-valued systems.
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