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Abstract. This research investigates the topological structure of the

space of interval-valued functions equipped with an order relation defined
by open balls. The aim is to establish analogues of fundamental theorems

in calculus, including Bolzano’s theorem, the intermediate value theorem,

and Rolle’s theorem, within this interval-valued function setting. More-
over, we introduce a novel extension of the Mean Value Theorem to the

context of interval-valued functions on time scales. Our findings con-

tribute to the development of interval analysis and its applications in
various fields.
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1. Introduction

Many dynamic systems in engineering and applied sciences are inherently
affected by uncertainty in their parameters. Such uncertainties may arise due
to measurement errors, environmental fluctuations, model simplifications, or
limitations in experimental accuracy. Therefore, the development of rigorous
mathematical frameworks capable of incorporating and managing these un-
certainties has become a critical area of research. One of the most effective
approaches in this regard is interval analysis, which models data using inter-
vals instead of precise numerical values. Initially introduced in the context of
constrained optimization problems under uncertainty (e.g., [3, 4, 14]), interval
analysis has significantly evolved and expanded into the study of interval differ-
ential equations (IDEs) [6, 9, 13]. These equations extend classical differential
equations by allowing coefficients, initial conditions, and even solutions to be
interval-valued, thus providing a more robust and realistic modeling of systems
with incomplete or imprecise data. The foundational principles of interval
arithmetic were established by Moore [8]. However, it soon became clear that
the set of interval numbers, under classical arithmetic operations, does not form
a vector space or an additive group. For instance, the identity a− a = 0, valid
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in the real number system, does not generally hold in the interval setting. To
address this issue, Hukuhara [3] introduced a novel subtraction operation, now
known as the Hukuhara difference (	), in 1967. This difference is well-defined
when one interval is a subset of the other, but it fails in the general case. To
overcome these limitations, Markov [7] proposed an alternative, set-based def-
inition of subtraction, and more recently, Stefanini [11] extended this concept
by introducing the generalized Hukuhara difference (	g), which is applicable
to arbitrary intervals while preserving desirable algebraic properties. These
generalized differences have enabled the development of interval-valued vector
spaces with operations that satisfy commutative and distributive laws, laying
a solid foundation for further functional and topological analysis. Meanwhile,
time scale calculus, originally introduced to unify the theories of discrete and
continuous dynamical systems, has emerged as a valuable tool for modeling
hybrid time structures. When integrated with interval analysis, it enables a
refined study of dynamic systems that are subject to both temporal variability
and parametric uncertainty, particularly in applications where data may be
imprecise or sampled irregularly. In this work, we aim to contribute to the the-
oretical foundation of interval-valued analysis by investigating the behavior of
interval-valued functions defined on time scales. In particular, we extend clas-
sical theorems such as the mean value theorem to this generalized setting. Our
results provide a systematic and rigorous approach for studying interval differ-
ential equations on time scales, with potential applications in robust modeling,
control theory, and the qualitative analysis of uncertain systems.

2. Preliminaries

2.1. Introduction and fundamental properties of gH-difference. Let
IR denote the set of all bounded closed intervals on the real line R. An interval
is said to be degenerate if its left and right endpoints coincide; that is, for
a = [aL, aR], we have aL = aR. Two intervals are considered equal if their
corresponding endpoints are identical.

Interval numbers exhibit subtraction properties that differ significantly from
those of real numbers. In particular, subtraction does not function as the in-
verse operation of Minkowski addition. Although the cancellation law (a+ c =
b+ c implies a = b) holds for interval addition, the absence of additive inverses
for most intervals—except for degenerate ones—prevents interval subtraction
from mirroring classical arithmetic behavior. As a consequence, several foun-
dational principles of number theory do not directly apply in the context of
interval analysis.

To overcome these limitations, Hukuhara introduced a new subtraction oper-
ation called the Hukuhara difference (H-difference), denoted by 	. Specifically,
a	b = c if and only if a = b+c. This definition establishes that subtracting an
interval from itself yields the zero interval. However, its applicability is limited
to cases where the width of a is greater than or equal to the width of b.
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Stefanini [11] later extended this concept and established a more general
framework for interval subtraction.

Definition 2.1 ([11]). The generalized Hukuhara difference (gH-difference) of
two intervals a and b is defined as

a	g b = c,

where c satisfies one of the following conditions:

(i) a = b + c if ω(a) ≥ ω(b), where ω(a) and ω(b) denote the widths of a
and b, respectively;

(ii) b = a+ (−1)c if ω(a) < ω(b), where (−1)c = [−cR,−cL].

There exists a notable relationship between the H-difference and the gH-
difference. When ω(a) ≥ ω(b), both operations yield the same result. In
contrast, if ω(a) < ω(b), the H-difference is not defined, but the gH-difference
remains well-defined. Therefore, the gH-difference can be regarded as a gener-
alization of the H-difference, offering enhanced flexibility in interval computa-
tions.

2.2. Normed interval value space. The set IR of all bounded closed in-
tervals on R does not form a linear space under standard interval arithmetic,
as defined in [11]. However, when subtraction is replaced by the generalized
Hukuhara difference (gH-difference), IR exhibits quasi-linear structure. In this
context, for each a ∈ IR, there exists a unique d ∈ IR such that a	g d = 0.

To measure distances between interval elements, we use the Hausdorff-Pompeiu
metric [7], defined by:

H(a, b) = max{|aL − bL|, |aR − bR|},

where a = [aL, aR] and b = [bL, bR].
Aubin and Cellina [1] showed that (IR, H) is a complete metric space. This

metric plays a key role in analyzing the properties of the H-difference and
gH-difference.

Definition 2.2 ([15]). The set Ω = {a 	 a : a ∈ IR} is called the null set of
IR, serving as a generalized zero element.

Definition 2.3 ([15]). Two intervals a, b ∈ IR are said to be almost identical,

denoted a
Ω
= b, if there exist ω1, ω2 ∈ Ω such that a⊕ ω1 = b⊕ ω2.

In particular, if a	 b = c, then generally a 6= b⊕ c, but a
Ω
= b⊕ c holds, since

there exists ω ∈ Ω such that a⊕ ω = b⊕ c.
Finally, define the interval norm ‖a‖I := H(a, 0) for all a ∈ IR. This func-

tion satisfies the properties of a norm, thereby endowing IR with the structure
of a normed quasi-linear space. Here, ‖ · ‖I denotes the interval norm defined
by the Hausdorff-Pompeiu distance on the space of intervals IR.
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2.3. Space of interval-valued functions. Let J ⊆ R be an interval. A
function f : J → IR is said to be continuous at t0 ∈ J if ‖f(t)	g f(t0)‖I → 0
as t → t0, where 	g denotes the generalized Hukuhara difference. The space
of all continuous interval-valued functions on J is denoted by

C(J, IR) = {f : J → IR | f is continuous on J} .
A metric ρ on C(J, IR) is defined by [14]

ρ(f, g) = sup
t∈J

H(f(t), g(t)),

where H denotes the Hausdorff-Pompeiu distance between intervals. It can be
shown that ρ satisfies the properties of a metric, hence (C(J, IR), ρ) is a metric
space.

Furthermore, a norm on C(J, IR) is given by

‖f‖C := ρ(f, 0) = sup
t∈J

H(f(t), 0) = sup
t∈J
|f(t)|,

which makes C(J, IR) a normed quasi-linear space.

2.3.1. Derivatives and order structure of interval-valued functions. We now
present various notions of differentiability for interval-valued functions, pri-
marily based on the generalized Hukuhara difference (gH-difference) [12].

Definition 2.4 ( [12]). Let f : J −→ IR be a function. We say that f is

gH-differentiable at a point t ∈ J , if there exists an interval number f
′
(t) ∈ IR

such that

f
′
(t) = lim

h→0

f(t+ h)	g f(t)

h
,(1)

where 	g denotes the generalized Hukuhara difference.

Definition 2.5 ( [14]). For a function f : J −→ IR which is gH-differentiable
at a point t within the interval [a, b], f is termed (i)-gH-differentiable at t if

f
′
(t) = [(fL)

′
(t), (fR)

′
(t)],

and (ii)-gH-differentiable at t if

f
′
(t) = [(fR)

′
(t), (fL)

′
(t)].

We now introduce a partial ordering in the space C(J, IR).

Definition 2.6. Let f, g ∈ C(J, IR). We say f ⊆ g if

fL(t) ≥ gL(t) and fR(t) ≤ gR(t), for all t ∈ J.
This defines a partial ordering on C(J, IR).

Example 2.7. Let f(t) = [t, 2− t] and g(t) = [t− 1, 3− t] for t ∈ [0, 1]. Then

fL(t) = t ≥ t− 1 = gL(t), fR(t) = 2− t ≤ 3− t = gR(t),

so f ⊆ g.
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Definition 2.8. An interval-valued function f ∈ C(J, IR) is called positive if
fL(t) > 0 for all t ∈ J , and negative if fR(t) < 0 for all t ∈ J .

Example 2.9. Let f(t) = sin2(πt) + 1 for t ∈ [0, 1]. Then fL(t) = fR(t) =
sin2(πt) + 1 > 0, hence f is a positive interval-valued function.

Definition 2.10. A function f ∈ C(J, IR) is maximal if for all g ∈ C(J, IR),
g ⊇ f implies g = f . Similarly, f is minimal if g ⊆ f implies g = f .

Example 2.11. Let f(t) = [t, 1] for t ∈ [0, 1] and consider the family

F = {g ∈ C([0, 1], IR) | g(t) ⊆ [t, 1]}.
Then f ∈ F is the maximal element with respect to the partial ordering ⊆.

We now introduce open balls and the induced topology on C(J, IR).

Definition 2.12 ( [15]). Given the non-negative real-valued function ‖ · ‖ :
IR −→ R+, we consider the following conditions.
(i) ‖αa‖ = |α|‖a‖ for any a ∈ IR and α ∈ F;

(i
′
) ‖αa‖ = |α|‖a‖ for any a ∈ IR and α ∈ F with α 6= 0.

(ii) ‖a⊕ b‖ ≤ ‖a‖+ ‖b‖ for any a, b ∈ IR.
(iii) ‖a‖ = 0 implies a ∈ Ω.
It is said that ‖ · ‖ satisfies the null condition when condition (iii) is replaced
by ‖a‖ = 0 if and only if a ∈ Ω.

Definition 2.13 ([15]). Different kinds of normed interval spaces are defined
below.
• It is said that (IR, ‖ · ‖) is a pseudo-seminormed interval space if and only

if conditions (i
′
) and (ii) are fulfilled.

• It is said that (IR, ‖ · ‖) is a seminormed interval space if and only if
conditions (i) and (ii) are fulfilled.
• It is said that (IR, ‖ · ‖) is a pseudo-normed interval space if and only if

conditions (i
′
), (ii), and (iii) are satisfied.

• It is said that (IR, ‖ ·‖) is a normed interval space if and only if conditions
(i), (ii), (iii) are satisfied.

Definition 2.14 ([15]). Let (J, ‖ · ‖) be a pseudo-seminormed interval space.
Three types of open balls with radius ε are defined by

B�(a; ε) = {a⊕ c : ‖c‖ < ε},
B?(a; ε) = {b : ‖a	 b‖ < ε},
B(a; ε) = {b : ‖a	g b‖ < ε}.

We know that the inverse image of every continuous function is open. Let
f : J −→ IR be a continuous interval-valued function. Then,

f−1(B(a; ε)) = {t|f(t) ∈ B(a; ε)} = {t|‖a	g f(t)‖ < ε}.
Since

‖a	g f(t)‖ < ε =⇒ H(a, f(t)) < ε,
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it follows that

max{|aL − fL(t)|, |aR − fR(t)|} < ε,

which implies {
|aL − fL(t)| < ε,

|aR − fR(t)| < ε,

and hence the preimage is open in both cases.
Topology on C(J, IR) is defined as follows. For all f ∈ C(J, IR)

B�r (f) = {f ⊕ h : ‖h‖C ≤ r, r ∈ R}
= {f ⊕ h : sup

t∈I
{H(h(t), 0)} < r, r ∈ R}

= {f ⊕ h : sup
t∈I
{max{|hL(t)− 0|, |hR(t)− 0|}} < r}.

For all f in C(J, IR)

Br(f) = {g| ρ(f, g) = ‖f 	g g‖C ≤ r, r ∈ R}
= {g| sup

t∈I
{H(f(t), g(t)) < r}}

= {g| sup
t∈I
{max{|fL(t)− gL(t)|, |fR(t)− gR(t)|}} < r}.

3. Fundamental theorems for interval-valued functions

In this section, we investigate the adaptation of three fundamental results
from differential calculus—namely, the Intermediate Value Theorem, Rolle’s
Theorem, and the Mean Value Theorem—in the setting of interval-valued func-
tions. We begin by recalling the necessary definitions and then present the
extended versions of these theorems along with rigorous proofs.

Theorem 3.1. (Bolzano’s Theorem)
If f : J −→ IR is a countinuous interval-valued function, for any a and b

in the interval J where a < b, the function f satisfies f(a) < 0 and f(b) > 0,
then there is J1 ⊆ J such that for all t ∈ J1, 0 ∈ f(t).

Proof. It is evident that fL, fR satisfy the conditions of the theorem. There-
fore, there are c1, c2 in J such that fL(c1) = 0, fR(c2) = 0. Since fL ≤ fR we
have c2 ≤ c1.
If c2 = c1 then f(c1) = 0.
If c2 6= c1 then for all t ∈ [c2, c1] we have 0 ∈ f(t), because in this interval
fL(t) ≤ 0 and fR(t) ≥ 0. �

Theorem 3.2. (Intermediate Value Theorem)
Let f : J −→ IR be a countinuous function, and a, b ∈ J with a < b. If K

is an interval satisfying f(a) ⊆ K ⊆ f(b) then there is an interval J1 ⊆ [a, b]
in which for any t ∈ J1,

K ⊆ f(t).
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Proof. For any t ∈ J we set

R(t) = f(t)	g K.

Thus, since f(a) < K, f(b) > K, we have R(a) < 0, R(b) > 0. So by Theorem
3.1, there exists an interval [a, b] such that for all t ∈ [a, b], 0 ∈ R(t), so

0 ∈ f(t)	g K =⇒

 fL(t)−KL ≤ 0,

fR(t)−KR ≥ 0,

which implies  fL(t) ≤ KL,

fR(t) ≥ KR,

and thus

K ⊆ f(t).

Therefore, the proof is complete. �

Definition 3.3. Assume that (IR,⊆) represents a partially ordered set, C =
{cα}α∈Λ ⊆ IR is a chain in (IR,⊆) if for all α, β ∈ Λ,

Cα ⊆ Cβ or Cβ ⊆ Cα.

Example 3.4. Let f : [0, 1]→ IR be an interval-valued function defined by

f(t) = [0, t], t ∈ [0, 1].

Define the family C = {f(t) | t ∈ [0, 1]} ⊆ IR. Then, for any 0 ≤ t1 < t2 ≤ 1,
we have

f(t1) = [0, t1] ⊆ [0, t2] = f(t2),

which shows that C is an ascending chain generated by the function f . Hence,
C is a chain in (IR,⊆).

Theorem 3.5. (Extremal Value Theorem)
Let f ∈ C(J, IR) then every closed chain f(aλ)λ∈Λ has maximum and min-

imum points.

Proof. Let f(aλ) be a chain in f(J), since fL, fR are continuous on J , fR(aλ)
has maximum in {aλ} and fL(aλ) has minimum in {aλ}, so every chain is
bounded and closed so it has maximum and minimum. �

Corollary 3.6. If two functions fL, fR are both strictly increasing (decreas-
ing), then the function f has not maximal (minimal).

Corollary 3.7. Let f ∈ C(J, IR) be gH-differentiable, if the derivative exists
at the maximal or minimal points, then

0 ∈ f
′
(t).
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Theorem 3.8. (Rolle’s Theorem)
If an interval-valued function f : J −→ IR is continuous and
gH-differentiable, for all a, b ∈ J , where a < b and f(a) = f(b), then there

exists t ∈ J such that 0 ∈ f ′(t).

Proof. Since fL, fR are continuous and differentiable, by assumption fL(a) =
fL(b) and fR(a) = fR(b), so by Roll’s theorem in real number, there are

t1, t2 ∈ [a, b] so that (fL)
′
(t1) = 0, (fR)

′
(t2) = 0. So

0 ∈ f
′
(t).

�

Example 3.9. Take f(t) = [sin2(t), cos2(t)] and set a = 0, b = π so f(a) =

f(b) = [0, 1], then f
′
(t) = [2 sin(t) cos(t),−2 sin(t) cos(t)]. When t =

2π

3
we

have

f
′
(
2π

3
) = [2 sin(

2π

3
) cos(

2π

3
),−2 sin(

2π

3
) cos(

2π

3
)] = [−3

2
,

3

2
].

That is,

0 ∈ f
′
(
2π

3
) = [−3

2
,

3

2
].

Example 3.10. Take f(t) = [sin(t), 1] and set a = 0, b = 2π, (a < b) so that

f(a) = f(b) = [0, 1], then f
′
(t) = [cos(t), 0] for t = π, we have

f
′
(π) = [cos(π), 0] = [−1, 0].

That is,

0 ∈ f
′
(π) = [−1, 0].

In the following, we will present a proof for the mean value theorem in
interval-valued function space, using Rolle’s Theorem. Note that to prove this

theorem, the function f(x) and the expression
f(b)	g f(a)

b− a
x must be gH-

differentiable from two different types.

Theorem 3.11. (Mean Value Theorem)
If an interval-valued function f : J −→ IR is continuous and (ii)-gH-

differentiable, then for any a, b ∈ J with a < b there exists a point t ∈ [a, b]
such that

f
′
(t) ⊇ f(b)	g f(a)

b− a
.

Proof. Define

g(x) = f(x)	g
f(b)	g f(a)

b− a
x , x ∈ J.
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It is evident that the expression
f(b)	g f(a)

b− a
x is (i)-gH-differentiable. Since

the interval-valued function f is continuous and gH-differentiable over the in-
terval [a, b], it follows that g is also continuous and gH-differentiable.

We now show that 0 ∈ g′(t). This implies that the interval-valued function
g satisfies the hypotheses of Rolle’s Theorem 3.8. Specifically,

g(a) = f(a)	g
f(b)	g f(a)

b− a
· a

= f(a)	g
a · f(b)	g a · f(a)

b− a
,

and hence,

(b− a)g(a) = (b− a)f(a)	g (a · f(b)	g a · f(a)).

If ω(f(b)) ≥ ω(f(a)), then by Lemma 2.3 of [14], we obtain

(b− a)g(a) = ((b− a)f(a) + a · f(a))	g a · f(b)

= (b · f(a)− a · f(a) + a · f(a))	g a · f(b)

= b · f(a)	g a · f(b)

= g(b)(b− a),

and therefore,

g(a) = g(b).

On the other hand, if ω(f(b)) < ω(f(a)), then by Lemma 2.3 of [14], we have

(b− a)g(a) = a · f(a)	g (a · f(b) + (−1)(b− a)f(a))

= a · f(a)	g (a · f(b) + (a− b)f(a))

= a · f(a)	g (a · f(b) + a · f(a)	g b · f(a))

= b · f(a)	g (a · f(b) + a · f(a) + (−1)a · f(a))

= b · f(a)	g a · f(b)

= g(b)(b− a),

and again

g(a) = g(b).

Consequently, the interval-valued function g satisfies Rolle’s Theorem, and
there exists t ∈ [a, b] such that 0 ∈ g

′
(t). From Theorem 3.8 and Theorem

4.5 of [14], we have

0 ∈ g
′
(t) = f

′
(t) + (−1)

f(b)	g f(a)

b− a

= f
′
(t) +

f(a)	g f(b)

b− a
.
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Hence 
(f
′
)L(t) + (

f(a)− f(b)

b− a
)L ≤ 0,

(f
′
)R(t) + (

f(a)− f(b)

b− a
)R ≥ 0,

which implies 
(f
′
)L(t) ≤ (

f(b)− f(a)

b− a
)L,

(f
′
)R(t) ≥ (

f(b)− f(a)

b− a
)R,

and thus
f(b)	g f(a)

b− a
⊆ f

′
(t).

�

Example 3.12. Take f(t) = [−2, sin t] and set a =
π

6
, b =

2π

3
, so that f(

π

6
) =

[−2,
1

2
], f(

2π

3
) = [−2,

√
3

2
] and

f(b)	g f(a)

b− a
=
f(

2π

3
)	g f(

π

6
)

2π

3
− π

6

=
[−2,

√
3

2
]	g [−2,

1

2
]

π

2

=
[min{−2 + 2,

√
3

2
− 1

2
},max{−2 + 2,

√
3

2
− 1

2
}]

π

2

=
[0,

√
3− 1

2
]

π

2

= [0,

√
3− 1

π
].

We have

f
′
(t) = [0, cos t].

Then, when t =
π

3
( with a < t < b), we have f

′
(
π

3
) = [0,

1

2
]. Consequently

f
′
(
π

3
) = [0,

1

2
] ⊇

f(
2π

3
)	g f(

π

6
)

2π

3
− π

6

= [0,

√
3− 1

π
].
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Remark 3.13. Note that in Mean Value Theorem where interval-valued function
f(x) is (i)-gH-differentiable, we have

f
′
(t) ⊆ f(b)	g f(a)

b− a
.

Example 3.14. Take f(t) = [sin2(t), cos2(t)] and set a =
π

4
, b = 2π, we have

f(
π

4
) = [

1

4
,

1

4
], f(2π) = [0, 1] and

f(2π)	g f(
π

4
)

2π − π

4

=
[0, 1]	g [

1

4
,

1

4
]

7π

4

=
[−1

4
,

3

4
]

7π

4

= [− 1

7π
,

3

7π
],

then for t =
3π

2
we have

f
′
(
3π

2
) = [−2 sin(

3π

2
) cos(

3π

2
), 2 sin(

3π

2
) cos(

3π

2
)] = [0, 0].

Consequently

f
′
(
3π

2
) = [0, 0] ⊆

f(2π)	g f(
π

4
)

2π − π

4

= [− 1

7π
,

3

7π
].

And we have

f(2π)− f(
π

4
)

2π − π

4

=
[0, 1]− [

1

4
,

1

4
]

7π

4

=
[−1

4
,

3

4
]

7π

4

= [− 1

7π
,

3

7π
].

Consequently

f
′
(
3π

2
) = [0, 0] ⊆

f(2π)− f(
π

4
)

2π − π

4

= [− 1

7π
,

3

7π
].



292 T. Shokoohi, S.M.S. Modarres, A. Karami

Remark 3.15. Note that the above theorem holds only for the gH-difference
and ordinary difference, and it does not hold for the Hokuhara difference of
intervals.

We will now present an example that demonstrates the failure of the Mean
Value Theorem for the Hokuhara difference.

Example 3.16. Take f(t) = [−t2, t2 + 1] and set a = −2, b = 1 where a < b
such that f(−2) = [−4, 5], f(1) = [−1, 2] and

f(b)	g f(a)

b− a
=
f(1)	g f(−2)

1− (−2)

=
[−1, 2]	g [−4, 5]

1 + 2

=
[min{−1 + 4, 2− 5},max{−1 + 4, 2− 5}]

3
=

[−3, 3]

3
= [−1, 1],

and

f(b)− f(a)

b− a
=
f(1)− f(−2)

1− (−2)

=
[−1, 2]− [−4, 5]

1 + 2

=
[−1− 5, 2 + 4]

3
=

[−6, 6]

3
= [−2, 2].

We have

f
′
(t) = [−2t, 2t].

Then, when t =
1

2
( with a < t < b), we have f

′
(
1

2
) = [−1, 1]. Consequently,

we have the following inclusion

f
′
(
1

2
) = [−1, 1] ⊆ f(1)	g f(−2)

1− (−2)
= [−1, 1].

Alternatively, we can write

f
′
(
1

2
) = [−1, 1] ⊆ f(1)− f(−2)

1− (−2)
= [−2, 2].

Or for t = 0(a < t < b), we have f
′
(0) = [0, 0], consequently

f
′
(0) = [0, 0] ⊆ f(1)	g f(−2)

1− (−2)
= [−1, 1],

and also, for the ordinary difference, we have

f
′
(0) = [0, 0] ⊆ f(1)− f(−2)

1− (−2)
= [−2, 2].
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However,
f(b)	 f(a)

b− a
cannot be defined.

4. Foundations of differentiation and the Mean Value Theo-
rem for interval-valued functions on time scales

In this section, we begin by revisiting the fundamental notions of delta (∆)
and nabla (∇) differentiability for interval-valued functions defined on time
scales. These concepts serve as the foundation for establishing a mean value
theorem tailored to interval-valued functions. Our goal is to develop a unified
theoretical framework that integrates both discrete and continuous cases
within the setting of interval analysis.
A time scale T is a non-empty closed subset of R. To characterize the
structure of a time scale, we introduce the following operators and
classifications [2, 5, 10]:
Jump operators
(i) The forward jump operator, σ : T→ T, yields the smallest element in
T that is strictly greater than t, in other words

σ(t) := inf{s ∈ T : s > t}.

(ii) The backward jump operator, ρ : T→ T, determines the largest
element in T that is strictly less than t, in other words

ρ(t) := sup{s ∈ T : s < t}.

In this context, we define inf ∅ = supT, (meaning if T has a maximum
element, the forward jump operator σ(t) equals t) and sup ∅ = infT
(implying that the backward jump operator ρ(t) equals t when T has a
minimum element).
A point t within a time scale T is classified as:

• Right-scattered if the forward jump operator σ(t) is strictly greater
than t.
• Right-dense if the forward jump operator σ(t) equals t.
• Left-scattered if the backward jump operator ρ(t) is strictly less

than t.
• Left-dense if the backward jump operator ρ(t) equals t.

By considering a time scale T, the forward step size function µ : T −→ [0,∞)
is defined as µ(t) := σ(t)− t. Similarly, the backward step size function
ν : T −→ [0,∞) is defined as ν(t) := t− ρ(t).
We define two subsets, Tk and Tk, of the time scale T. If T has a
right-scattered minimum m, then Tk = T− {m}; in other cases set Tk = T.
In conclusion,

Tk =

{
T \ [inf T, σ(inf T)) if inf T > −∞
T if inf T = −∞.
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If T includes a left-scattered maximum M , then Tk is defined as T− {M}; if
not, then Tk is simply T. In conclusion,

Tk =

{
T \ (ρ(supT), supT] if supT <∞
T if supT =∞.

In particular, given a time scale interval [a, b]T = {t ∈ T|a ≤ t ≤ b},
(a, b]T = {t ∈ T|a < t ≤ b}, observe that [a, b]k = [a, b]T when b is left-dense
(i.e. a < ρ(b) = b) and [a, b]k = [a, b)T = [a, ρ(b)]T when b is left-scattered
(i.e. a < ρ(b) < b). And also [a, b]k = [a, b]T when a is right-dense
(i.e. σ(a) = a < b) and [a, b]k = (a, b]T = [σ(a), b]T when a is right-scattered
(i.e. a < σ(a) < b).
Let g be a scalar-valued function defined on the time scale T (i.e.,
g : T −→ R), and let t be an element of Tk. For all ε > 0, suppose there exist
a real number α and a neighborhood U around t such that

|g(ρ(t))− g(s)− α(ρ(t)− s)| ≤ ε|ρ(t)− s| for all s ∈ U ∩ T,
then g is considered to be nabla(∇) differentiable at the point t. The real
number α, denoted by g∇(t), is known as the ∇-derivative. In general terms,
g is considered nabla(∇) differentiable on Tk if for all t ∈ Tk the ∇-derivative
g∇(t) exists.

Definition 4.1 ([10]). Let F : T −→ IR be an interval-valued function
defined on a time scale T, and let A ∈ IR. We say that A is the T-limit of F
at t0 ∈ T if for all ε > 0, there exists δ > 0 such that dH(F (t), A) ≤ ε for all
t ∈ UT (t0, δ), where UT(t0, δ) = (t0 − δ, t0 + δ) ∩ T. If such a T-limit A exists,
it is unique and denoted by A = T− limt→t0 F (t).

Definition 4.2 ([10]). Let F : T→ IR be an interval-valued function on a
time scale T, and let t ∈ Tk. F∇gH(t) is called the nabla(∇) generalized
Hukuhara derivative of F at t if, for all ε > 0, there exists δ > 0 such that

dH(F (ρ(t))	g F (s), (ρ(t)− s)F∇gH(t)) ≤ ε|ρ(t)− s|
for all s ∈ UT(t, δ). If this condition holds for all t ∈ Tk, then F is said to be
∇gH -differentiable on Tk. In the case T = R, this derivative coincides with

the classical gH-derivative F
′

gH .

The Mean Value Theorem on time scales for interval-valued
functions
In what follows, we present a generalized version of the Mean Value Theorem
for interval-valued functions defined on time scales. We begin by introducing
the necessary definitions and properties of interval-valued functions on time
scales, and then proceed to develop and prove the new version of the Mean
Value Theorem in this context.

Definition 4.3. An interval-valued function f : T −→ IR is considered to
achieve its local left-maximum (its local left-minimum) at t0 ∈ T \ {maxT} if
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(i) for a left-scattered t0, f(ρ(t0)) ⊆ f(t0) ( f(ρ(t0)) ⊇ f(t0) );
(ii) for a left-dense t0, there is a neighborhood U of t0 where

f(t0) ⊇ f(t) ( f(t0) ⊆ f(t) )

for all t ∈ U ∩ T with t < t0.

Example 4.4. Let T = {0} ∪ [0.5, 1] ⊂ R . Note that t = 0.5 is left-scattered
and every point in (0.5, 1] is left-dense. Define the interval-valued function
f : T→ IR by

f(t) =


[0, 1], t = 0,

[1, 2], t = 0.5,

[1.5, 2], t ∈ (0.5, 1].

Case 1 (Left-scattered point):
Consider t0 = 0.5. Since ρ(0.5) = 0, we have

f(ρ(0.5)) = f(0) = [0, 1] ⊆ [1, 2] = f(0.5).

Therefore, by Definition 4.3, the function f attains a local left-maximum at
t0 = 0.5.
Case 2 (Left-dense point):
Now consider t0 = 1. For all t ∈ (0.5, 1), we have f(t) = [1.5, 2] = f(1), so
clearly

f(1) ⊇ f(t).

Hence, condition (ii) of Definition 4.3 is satisfied, and f also achieves a local
left-maximum at t0 = 1.

Theorem 4.5. Assume f : T −→ IR is differentiable at t0 ∈ T \ {maxT}. If
zero is the interior point of f∇(t0) and f is (i)-gH-differentiable then f
achieves its local left-maximum at t0. If zero is the interior point of f∇(t0)
and f is (ii)-gH-differentiable then f achieves its local left-minimum at t0.

Proof. Let 0 ∈ f∇(t0) and f be (i)-gH-differentiable. If t0 is left-scattered,
then

0 ∈ f∇(t0) =
f(t0)	g f(ρ(t0))

t0 − ρ(t0)
.

Consequently, we obtain the following inequalities:{
fL(t0)− fL(ρ(t0)) < 0

fR(t0)− fR(ρ(t0)) > 0.

Therefore, we conclude that

f(ρ(t0)) ⊂ f(t0).

Let now t0 be left-dense. Thus,

0 ∈ f∇(t0) = lim
t→t0

f(t0)	g f(t)

t0 − t
,
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which implies that

0 ∈ f(t0)	g f(t).

Therefore, assume that f is (i)-gH-differentiable. Under this assumption, the
following inequalities hold {

fL(t0)− fL(t) < 0,

fR(t0)− fR(t) > 0.

Thus, f(t) ⊂ f(t0) for all t in U ∩ T where t < t0. So f achieves its local
left-maximum at t0.
When 0 ∈ f∇(t0) and f is (ii)-gH-differentiable, it is proven similarly. Thus,
f(t0) ⊂ f(t) for all t ∈ U ∩ T where t < t0. Consequently, f achieves its local
left-minimum at t0. �

Corollary 4.6. Assume f : T −→ IR is differentiable at t0 ∈ T \ {maxT}. If
f achieves its local left-maximum (its local left-minimum) at t0, then f is
(i)-gH-differentiable ((ii)-gH-differentiable).

Theorem 4.7. Let f be a continuous interval-valued function on interval
[a, b] that is differentiable on interval (a, b) with f(a) = f(b). If f has a

maximum (minimum) at t0 then f
′
(t0) = 0, and there exists a neighborhood

(t− δ, t0) in which f is (i)-gH-differentiable ((ii)-gH-differentiable) and there
also exists a neighborhood (t0, t+ δ), in which f is (ii)-gH-differentiable
((i)-gH-differentiable).

Proof. If the function f has a maximum (minimum) at the point t, it is easily
seen that fL(t) is a minimum (maximum) and fR(t) is a maximum

(minimum). Since f is differentiable, we have (fL)
′
(t) = 0 and (fR)

′
(t) = 0.

So f
′
(t) = 0. Define h(t) = fR(t)− fL(t). Since h(t) is continuous and

differentiable, it follows that at any point where f attains a maximum
(minimum), the function h also attains a maximum (minimum). This is a
direct consequence of the definitions of fL, fR and h. Given that f(a) = f(b),

we have h(a) = h(b), which implies h
′
(t0) = 0. Thus h(t) is maximum

(minimum). Therefore, there exists a neighborhood (t− δ, t0) in which

(fR)
′
> (fL)

′
((fR)

′
< (fL)

′
), so f is (i)-gH-differentiable

((ii)-gH-differentiable) on this interval. Similarly, there exists a neighborhood

(t0, t− δ) in which (fR)
′
< (fL)

′
((fR)

′
> (fL)

′
), so f is (ii)-gH-differentiable

((i)-gH-differentiable) on this interval. �

Theorem 4.8. (Mean Value Theorem on Interval-Valued Functions).
Consider f , as continuous interval-valued function on [a, b] that is
differentiable on (a, b]. Then there are points ξ, τ ∈ (a, b] so that

f∇(τ) ⊆ f(b)	g f(a)

b− a
⊆ f∇(ξ).
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Proof. Take the interval-valued function ϕ, which is defined on [a, b] as:

ϕ(t) = f(t)	g f(a)	g
f(b)	g f(a)

b− a
(t− a).

It is apparent that ϕ is continuous on [a, b] and differentiable on (a, b].
Additionally,

ϕ(a) = ϕ(b) = 0,

and by Theorem 4.7, there are points ξ, τ ∈ (a, b] so that ϕ∇(ξ) is
(i)-gH-differentiable and ϕ∇(τ) is (ii)-gH-differentiable. Therefore,
considering that

ϕ∇(t) = f∇(t)	g
f(b)	g f(a)

b− a
,

we come to the conclusion of the theorem. �

Corollary 4.9. Let f be a continuous interval-valued function, differentiable
on (a, b] except possibly at b. If f∇(t) = 0 for all t ∈ (a, b], then f is constant
on the interval [a, b].

Corollary 4.10. Let f be a continuous interval-valued function,
differentiable on (a, b] except possibly at b. Then
(i) f is increasing on [a, b] if it is (i)-gH-differentiable on (a, b],
(ii) f is decreasing on [a, b] if it is (ii)-gH-differentiable on (a, b],
(iii) f is nondecreasing on [a, b] if 0 ∈ f∇(t) and f is (i)-gH-differentiable for
all t ∈ (a, b],
(iv) f is nonincreasing on [a, b] if 0 ∈ f∇(t) and f is (ii)-gH-differentiable for
all t ∈ (a, b].

The subsequent theorem extends the findings of Theorem 4.8.

Theorem 4.11. Assume f, g are continuous interval-valued functions on
[a, b] and differentiable on (a, b]. Suppose g is (i)-gH-differentiable for all
t ∈ (a, b]. Then there exist ξ, τ ∈ (a, b] so that

f∇(τ)

g∇(τ)
⊆ f(b)	g f(a)

b− a
⊆ f∇(ξ)

g∇(ξ)
.

Proof. From Theorem 4.8 and since g is (i)-gH-differentiable for all t ∈ (a, b],
we deduce that g(a) 6= g(b). Thus, the auxiliary interval-valued function can
be considered

ϕ(t) = f(t)	g f(a)	g
f(b)	g f(a)

g(b)	g g(a)
[g(t)	g g(a)].

It is evident that ϕ is continuous on [a, b] and differentiable on (a, b].
Additionally,

ϕ(a) = ϕ(b) = 0.

Applying Theorem 4.7 to the interval-valued function ϕ and noting that

ϕ∇(t) = f∇(t)	g
f(b)	g f(a)

g(b)	g g(a)
g∇(t),
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we conclude that the desired result holds. Hence, the proof is complete. �

Theorem 4.12. Consider F as an interval-valued function and g as a
real-valued function defined on T. Suppose F is ∇gH-differentiable and g is
∇-differentiable on Tk. If

‖F∇gH(t)‖ ≤ g∇(t)

for all t ∈ Tk, then
‖F (t)	g F (x)‖ ≥ g(x)− g(t)

for all t ∈ [x, y]T when x and y are in T with x ≤ y.

Proof. Consider x and y as elements of T with x ≤ y. For all positive ε > 0,
the principle of induction is applicable, as demonstrated in Theorem 2.7
of [10], to verify that

S(t) : ‖F (t)	g F (x)‖ ≥ g(t)− g(x)− ε(t− x)

is valid for all t in the interval [x, y]T. The proof is structured in four parts:
(I) S(x) is clearly true when t = x.
(II) Suppose t is left-scattered and S(t) holds true. Based on Theorem 2.6
of [10], it follows that

‖F (x)	g F (ρ(t))‖ = ‖F (x)	g F (t) + F (t)	g F (ρ(t))‖
≥ ‖F (x)	g F (t)‖ − ‖F (ρ(t))	g F (t)‖
= ‖F (x)	g F (t)‖ − ‖ − ν(t)F∇gH(t)‖
= ‖F (t)	g F (x)‖ − ν(t)‖F∇gH(t)‖
≥ g(t)− g(x)− ε(t− x)− ν(t)g∇(t)

= g(t)− g(x)− ε(t− x)− g(t) + g(ρ(t))

= g(ρ(t))− g(x)− ε(t− x).

Therefore, the statement S(ρ(t)) holds.
(III) Assume S(t) is true and t 6= y is left-dense. Then, ρ(t) = t. Because of
the ∇gH -differentiability of F and the ∇-differentiability of g at t, there is a
neighborhood UT of t such that

dH(F (t)	g F (y), F∇gH(t)(t− y)) ≤ ε

2
|t− y|

for each y ∈ UT and

|g(t)− g(y)− g∇(t)(t− y)| ≤ ε

2
|t− y|

for each y ∈ UT. Consequently, it follows that

dH(F (t), F (y)) = dH(F (t)	g F (y), {0})
≤ dH(F (t)	g F (y), F∇gH(t)(t− y)) + dH({0}, F∇gH(t)(t− y))

≤ (‖F∇gH(t)‖+
ε

2
)|t− y|
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and

g(t)− g(y)− g∇(t)(t− y) ≥ −ε
2
|t− y|

for each y ∈ UT. Therefore, for each y in UT ∩ (t,∞), we obtain

‖F (x)	g F (y)‖ = ‖(F (x)	g F (t))	g (F (y)	g F (t))‖
≥ ‖F (x)	g F (t)‖ − ‖F (y)	g F (t)‖

≥ g(t)− g(x)− ε(t− x)− ‖F∇gH(t)(t− y)‖ − ε

2
|t− y|

≥ g(t)− g(x)− ε(t− x)− g∇(t)(t− y)− ε

2
|t− y|

≥ g(t)− g(x)− ε(t− x)− ε

2
(t− y)− g(t) + g(y)− ε

2
|t− y|

≥ g(y)− g(x)− ε(y − x).

This indicates that S(y) holds for all y in UT ∩ (t,∞).
(IV ) Assume t is right-dense and S(τ) is true for all τ < t. Since F and g are
continuous, we then obtain

‖F (t)	g F (x)‖ = lim
τ→t−

‖F (x)	g F (τ)‖

≥ lim
τ→t−

g(τ)− g(x) + ε(τ − x)

= g(t)− g(x) + ε(t− x).

This demonstrates that S(t) is valid. Since ε is arbitrary, the inequality
‖F (t)	g F (x)‖ ≥ g(t)− g(x) + ε(t− x) holds for all ε. Hence, the inequality
‖F (t)	g F (x)‖ ≥ g(t)− g(x) follows, and the proof is complete. �

Example 4.13. Let T = [0, 1] and let F (t) = [t, 2t] and g(t) = 2t− 1. If

x =
1

4
and t =

1

3
, then F

′

gH(t) = F∇gH(t) = [1, 2] and g∇(t) = 2. Since

‖F∇gH(t)‖ ≤ 2,

‖F (
1

3
)	g F (

1

4
)‖ ≥ g(

1

4
)− g(

1

3
),

‖[ 1
3
,

2

3
]	g [

1

4
,

1

2
]‖ ≥ (

1

2
− 1)− (

2

3
− 1),

‖[ 1

12
,

1

6
]‖ ≥ −1

2
+

1

3
,

1

6
≥ −1

6
.

Example 4.14. Let T = Z and let F (t) = [sin2(t), cos2(t)] and g(t) = sin(t).

If x = −π
4

and t = 0, then F
′

gH(t) = F∇gH(t) = [−2 sin(t) cos(t), 2 sin(t) cos(t)]

and g∇(t) = cos(t). Since ‖F∇gH(t)‖ = ‖[0, 0]‖ ≤ cos(t) = 1,
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‖F (0)	g F (−π
4

)‖ ≥ g(−π
4

)− g(0),

‖[0, 1]	g [
1

2
,

1

2
]‖ ≥ −

√
2

2
− 0,

‖[−1

2
,

1

2
]‖ ≥ −

√
2

2
,

1

2
≥ −
√

2

2
.

5. Conclusion

This paper investigates the behavior of classical theorems—specifically, the
Intermediate Value Theorem, Rolle’s Theorem, and the Mean Value
Theorem—within the framework of interval-valued functions. We
demonstrate that these theorems require modified hypotheses to remain valid
in the interval context, and we propose new formulations of the Mean Value
Theorem under both (i)-gH-differentiable and (ii)-gH-differentiable. These
contributions advance the theoretical foundations of interval analysis and
extend core concepts of classical calculus to broader function spaces. The
results also provide a groundwork for future studies in areas such as robust
control, uncertain dynamical systems, and time scale calculus. Future
research directions include the generalization of additional classical results,
the study of topological and algebraic properties of interval-valued functions,
and the development of efficient numerical methods for solving interval
differential equations.
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