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Abstract. This paper is devoted to comparing the Lasso topology and

the Whisker topology on the fundamental groupoid. We prove that for

locally path connected and semilocally simply connected spaces, the two
topologies coincide. However, the converse does not hold in general, and

we provide a partial converse. Furthermore, we observe that the topolog-

ical fundamental groupoid is not étale, and we show that the topological
fundamental groupoids of locally path connected and semilocally sim-

ply connected spaces, equipped with these topologies, are locally trivial.

Through several examples, we illustrate the necessity of these conditions.
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1. Introduction and motivation

The concept of the topological fundamental groupoid offers a significant ex-
tension to the classical fundamental group by removing the restriction of a
single fixed base point. It achieves this by considering homotopy classes of
paths connecting multiple points within a topological space, thereby providing
a richer and more global perspective on the space’s homotopical characteris-
tics. This broader viewpoint allows for a more nuanced understanding of the
underlying topology, making the fundamental groupoid a vital instrument in
contemporary algebraic topology and its adjacent fields [2].

Unlike the fundamental group, which focuses on loops based at one point, the
groupoid structure naturally accommodates morphisms between various points,
thus capturing the complexity of spaces that may be disconnected or contain
intricate path systems. This makes the fundamental groupoid particularly
effective for unraveling subtle symmetries and connections that remain hidden
under the traditional group framework [2, 8].

Locally trivial topological groupoids naturally arise as models for fiber bun-
dles, especially principal bundles. The local triviality condition corresponds to
the classical idea that a fiber bundle looks locally like a product space. The
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groupoid encodes how these local trivializations glue together globally, pro-
viding a unified algebraic-topological framework to study bundles and their
automorphisms [11]. Also, locally trivial topological groupoids extend classical
covering space theory by encoding how multiple local covers patch together.
They provide a general setting to study fundamental groupoids with local triv-
iality, which is essential for analyzing spaces that may be disconnected or have
complicated local topology [3].

For the first time, fundamental groupoids were topologized by Brown and
Danesh-Naruie [3]. They defined the lifted topology on a quotient of the funda-
mental groupoid of a given space X, making it a topological groupoid, provided
that X is locally nice–that is, locally path connected and semilocally simply
connected.

Beyond the category of locally nice spaces, in [12], the Lasso topology is
introduced on the fundamental groupoid as a generalization of the Lasso topol-
ogy on the fundamental group and the universal path space [4]. The Lasso
topology turns the fundamental groupoid into a topological groupoid when the
space is locally path connected [12]. In [14], it is shown that the Lasso topology
on the fundamental groupoid of X coincides with the lifted topology, provided
that X is locally path connected and semilocally simply connected.

Pakdaman and Shahini [13] also introduced the Whisker topology on the
fundamental groupoid. Under this topology, the fundamental groupoid is not
necessarily topological unless the space is a small loop transfer space.

Another attempt to topologize the fundamental groupoid was made by
Holkar and Hossain [9]. They introduced two equivalent topologies on the
fundamental groupoid of a locally path connected and semilocally simply con-
nected space: the CO topology (compact-open topology) and the UC topology
(universal cover topology). The UC topology is the same as the Whisker topol-
ogy in [13], although the Whisker topology is defined for general spaces, while
the UC topology is defined only for locally path connected and semilocally
simply connected spaces.

In this article, we present a comparison between the Lasso topology and
the Whisker topology. When the given space X is locally path connected and
semilocally simply connected, these topologies on the fundamental group and
the universal path space are known to be equivalent [18]. Since the Lasso and
Whisker topologies on the fundamental groupoid are generalizations of their
counterparts on the fundamental group and the universal path space, it is
natural to expect that these topologies are comparable, and we investigate this
relationship.

Through an example, we show that the Whisker topology is strictly finer
than the Lasso topology, and we prove that the two are equivalent for locally
path connected and semilocally simply connected spaces. As for the converse,
we provide an example of a locally path connected space in which the two
topologies are equivalent on its fundamental groupoid, although the space is
not semilocally simply connected. Nevertheless, we prove that for a locally
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path connected space X, if the two topologies are equivalent, then X is a
strong small loop transfer space.

Another direction of this article concerns the local triviality of topological
fundamental groupoids. The study of locally trivial groupoids was initiated by
Ehresmann [6], and further results have been obtained in [3] and [9]. However,
these results are restricted to locally path connected and semilocally simply con-
nected spaces, and no examples have been given to demonstrate the essentiality
of these conditions. We prove that the topological fundamental groupoids are
locally trivial when the given space X is locally path connected and semilocally
simply connected. By means of examples, we show that these conditions are
indeed essential.

Finally, we prove that the topological fundamental groupoid of a path con-
nected space is not étale. It is worth noting that even semilocally simply
connectedness is not sufficient for the fundamental groupoid to be étale.

2. Preliminaries

2.1. The Fundamental Groupoid. A groupoid G over G0 consists of a set
of arrows G and a set of objects G0, together with two maps S, T : G −→ G0,
called respectively the source and target maps, a map 1 : G0 −→ G;x 7→ 1x,
called the unit map, a map i : G −→ G; a 7−→ a−1, called the inverse map and
a map m : G2 −→ G; (a; b) 7→ m(a; b) = ab, called the composition map, where
G2 denotes the set of composable arrows:

G2 = {(a; b) ∈ G×G| S(b) = T (a)}.

These structure maps satisfy the following conditions:
i) S(ab) = S(a) and T (ab) = T (b) for all (a; b) ∈ G2,
ii) a(bc) = (ab)c for all a, b, c ∈ G such that S(b) = T (a) and S(c) = T (b),
iii) S(1x) = T (1x) = x for all x ∈ G0,
iv) a1T (a) = a and 1S(a)a = a for all a ∈ G,

v) each a ∈ G has a two-sided inverse a−1 such that S(a−1) = T (a), T (a−1) =
S(a) and aa−1 = 1S(a); a

−1a = 1T (a).
The set of arrows from x to y is denoted by G(x, y) and, in particular,

G(x) := G(x, x) is called the object group (or vertex group) at x. Also, we
denote S−1(x) by Gx and T−1(x) by Gx.

Definition 2.1. [10] A topological groupoid is a groupoid G together with
topologies on G and G0 such that the structure maps are continuous.

For a given topological space X, the fundamental groupoid πX has the set X
as its set of objects and for any x, y ∈ X the set πX(x, y) is the set of endpoint
fixing homotopy classes of paths in X from x to y. Composition of morphisms
[α], [β] is [α ∗ β], where α ∗ β refers to standard path concatenation and the
identity in πX(x, x) is the ex = [cx] for the constant path cx. The object group
at x, πX(x, x) considered to be the well-known fundamental group π1(X,x) [1].
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If U is an open cover of X, the subgroup of π1(X,x) consisting of the ho-
motopy classes of loops that can be represented by a product of the following
type:

n∏
j=1

αjβjα
−1
j ,

where the αj ’s are arbitrary paths starting at the base point x and each βj
is a loop inside one of the neighborhoods Ui ∈ U . This group is called the
Spanier group for U , denoted by π(U , x) [7, 16] and the intersection of all the
Spanier groups for open covers is called Spanier group of X and is denoted by
πsp
1 (X,x).

2.2. The Lasso Topology. Here, we recall the Lasso topology on the funda-
mental groupoid from [12]. Let U be an open cover of a given space X and for
x, y ∈ X, let [α] ∈ πX(x, y). If V , W ∈ U are open neighborhoods of x, y,
respectively. Consider

N([α],U , V,W ) =

{[β] ∈ πX | β ' γ∗µ∗α∗µ′∗λ, γ : I → V, λ : I →W, [µ] ∈ π1(U , x), [µ′] ∈ π1(U , y)}.

Theorem 2.2. [12] The family{
N([α],U , V,W )

∣∣ U is an open cover ofX;V,W ∈ U , [α] ∈ πX(x, y), x ∈ V, y ∈W
}

forms a basis for a topology on πX in which makes it a topological groupoid,
when X is locally path connected.

The topology that is generated by this basis is called the Lasso topology.
For a given topological space X, by πlX we mean the fundamental groupoid
πX equipped with the Lasso topology on the set of morphisms and original
topology on X, as the object set. Hence the operation πl is a functor from the
category of locally path connected topological spaces and continuous maps to
the category of topological groupoids [12].

Given a pointed path connected space (X,x), the universal path space X̃ is
the set of homotopy classes of all paths started from x and hence as the sets
we have

π1(X,x) ⊆ X̃ = (πX)x ⊆ πX.
The Lasso topology on the fundamental group [4], has a basis containing the
sets in the following form

N([α],U) = {[β] ∈ π1(X,x)| β ' α ∗ µ, for some [µ] ∈ π1(U , x)},

where [α] ∈ π1(X,x) and U is an open cover of X and is denoted by πl
1(X,x).

The basis of the Lasso topology on X̃, introduced in [19] is the collection of
sets

N([α],U , U) = {[β] ∈ X̃| β ' α ∗ µ ∗ γ, [µ] ∈ π1(U , x), γ : I → U, γ(0) = α(1)},
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where [α] ∈ X̃, U is an open cover of X and U ∈ U . The Lasso topology on
the universal path space is a generalization of the Lasso topology on the funda-
mental group [19, Proposition 7] and also the Lasso topology on fundamental
groupoid is a generalization of the Lasso topology on the universal path space
and hence is a generalization of πl

1(X,x) [12].

2.3. The Whisker Topology. For a given topological space X, let [α] ∈
πX(x, y), where x, y ∈ X. If V,W are open neighborhoods of x and y, respec-
tively, one can define [13]

N([α], V,W ) := {[β] ∈ πX|β ' γ ∗ α ∗ λ, γ(I) ⊆ V, λ(I) ⊆W},

where γ(1) = x and α(1) = λ(0) = y. Then the family

{N([α], V,W ); [α] ∈ πX(x, y), x ∈ V, y ∈W},

forms a basis for a topology on fundamental groupoid. The topology that is
generated by this basis, is called the Whisker topology and by πwX we mean
the fundamental groupoid πX equipped with the Whisker topology on the set
of morphisms and original topology on X, as the objects set.

Definition 2.3. [5] A topological space X is called small loop transfer at
x (SLT) if for every x0, x ∈ X, every open neighborhood U of X containing
x0, and every path α in X from x0 to x, there is an open neighborhood V
containing x such that for every loop β in V based at x there is a loop λ in U
based at x0 such that α ∗ β ∗ α−1 ' λ. Also, X is called SLT if it is SLT at
any point x.

If X is a small loop transfer space, then the fundamental groupoid with the
Whisker topology is a topological groupoid [13].

The Whisker topology on the fundamental group, which had been used in
[16] and named in [4], has a basis containing the sets in the following form

N([α], U) = {[β] ∈ π1(X,x)| β ' α∗µ, for some µ : I −→ U, µ(0) = µ(1) = x},

where [α] ∈ π1(X,x) and U is an open neighborhood of x.

The basis of the Whisker topology on X̃, introduced in [19] is the collection
of sets

N([α], U) = {[β] ∈ X̃| β ' α ∗ µ, for some µ : I −→ U, µ(0) = α(1)},

where [α] ∈ X̃ and U is an open neighborhood of α(1). Notably, the Whisker
topology on the fundamental groupoid is a generalization of the Whisker topol-
ogy on the πw

1 (X,x) [12] when X is a small loop transfer space. This property
makes the small loops added from the left side of paths homotopically trans-
ferable to the right side. We recall that a loop α in X with the base point x
is small if there exists a representative of the homotopy class [α] in every open
neighborhood U of x.
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3. The comparison of Lasso and Whisker topologies on the
fundamental groupoid

Virk and Zastrow [18] reviewed the existing topologies on the fundamental
group and studied their generalizations to the universal path space. They ob-
served that the Whisker topology is, in general, strictly finer than the Lasso
topology on the universal path space, and proved that for locally path con-
nected and semilocally simply connected spaces, all these topologies are equiv-
alent.

In this section, we compare two topologies on πX: the Lasso topology and
the Whisker topology.

Although the proof of the following proposition is straightforward and can
be easily deduced from the definitions, we present it in full detail to help novice
readers become more familiar with the concepts involved.

Proposition 3.1. πwX is finer than πlX.

Proof. Let N([α],U , U, V ) be a basic open neighborhood of [α] in πlX, where
α is a path from x to y, U is an open cover of X and U, V ∈ U . We show that
N([α], U, V ) ⊆ N([α],U , U, V ), where N([α], U, V ) is an open neighborhood of
[α] in πwX. Let [β] ∈ N([α], U, V ), then we have β ' λ ∗ α ∗ µ in which λ and
µ are paths in U and V , respectively. Now we can write β ' λ ∗ cx ∗ α ∗ cy ∗ µ
where cx ∈ π1(U , x) and cy ∈ π1(U , y), hence [β] ∈ N([α],U , U, V ). �

We recall that a given space X is semilocally simply connected if every
point x ∈ X has an open neighborhood U such that i∗π1(U, x) = {ex}, where
i : U −→ X is the inclusion map. It is also emphasized that a semilocally
simply connected space does not have to be locally path connected [7].

Proposition 3.2. If X is semilocally simply connected, then πlX is finer than
πwX and hence πlX and πwX are equivalent.

Proof. Let N([α], U, V ) be a basic open neighborhood of [α] in πwX, where α is
a path from x to y and U, V are open neighborhoods of x, y, respectively. Since
X is semilocally simply connected, there are simply connected neighborhoods
W and W ′ containing x and y, respectively. Let U ′ = U ∩W , V ′ = V ∩W ′
and U ′ = U ∪ {U ′, V ′} where U is the open cover of X consisting of simply
connected neighborhoods. We show that N([α],U ′, U ′, V ′) ⊆ N([α], U, V ). Let
[β] ∈ N([α],U ′, U ′, V ′), then we have β ' λ ∗ γ ∗ α ∗ γ′ ∗ µ, where λ and µ are
paths in U ′ and V ′, respectively, γ ∈ π1(U ′, x) and γ′ ∈ π1(U ′, y). Since γ ' cx
and γ′ ' cy, we have β ' λ ∗ α ∗ µ and therefore [β] ∈ N([α], U, V ). �

In the following example, we show that if X is not semilocally simply con-
nected, then πlX is not necessarily finer than πwX. This implies that semilo-
cally simply connectedness of X is a necessary condition in Proposition 3.2.

Example 3.3. Let H be the Hawaiian earring space, i.e, the shrinking wedge of
circles, αn be the circle of radius 1

n with the center ( 1
n , 0), for every n ∈ N and
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y be the common point of all circles. Let U be the open cover of H consisting
of all open balls, and let N([α1], U, V ) be an open neighborhood of [α1] in πwH
such that U, V ∈ U are open balls centered at the origin and with a radius less
than 1 which do not contain [α1]. We show that N([α1], U, V ) is not open in
πlH.

By contrary assume that N([α1], U, V ) is open in πlH. Hence there ex-
ist γ ∈ πH and an open cover U ′ such that the basic open neighborhood
N([γ],U ′, U ′, V ′) of [α1] is contained in N([α1], U, V ), where U ′, V ′ ∈ U ′ and
y = α(0) = α(1) = γ(0) = γ(1) = (0, 0) ∈ U ′ ∩ V ′. By [12, Lemma 2.3],
N([γ],U ′, U ′, V ′) = N([α1],U ′, U ′, V ′). Since y = (0, 0) is the common point
of all αn’s and their radii converge to zero, we can choose n > 1 so that
αn(I) ⊆ U ∩ U ′. Then [α1 ∗ αn ∗ (α1)−1] ∈ π(U ′, y) which implies that

[(α1 ∗ αn ∗ (α1)−1) ∗ α1 ∗ (α1 ∗ αn ∗ (α1)−1)] ∈ N([α1],U ′, U ′, V ′).

But [(α1 ∗αn ∗ (α1)−1) ∗α1 ∗ (α1 ∗αn ∗ (α1)−1)] = [α1 ∗αn ∗α1 ∗αn ∗ (α1)−1] /∈
N([α1], U, V ) because α1(I) does not lie in U and V [5, Proposition 4.10]. This
is a contradiction.

Now, of course, we have to examine the question whether the converse of
Proposition 3.2 is true or not, and if it is not, what conditions on X will
guarantee the converse of Proposition 3.2?

In the following example, we show that the converse of Proposition 3.2 does
not hold, and in the next corollary, we will present a partial converse for it.

Example 3.4. Let S be the small loop space introduced in [17]. The space S,
which is constructed using Harmonic Archipelago, has this property that for
every x ∈ S, every nontrivial loop α based at x is small.

We know that πwS is finer than πlS, in general. Let N([α], U, V ) be
an arbitrary basic open neighborhood of [α] ∈ πwS, where U, V are open
neighborhood of x := α(0), y := α(1), respectively. For every open cover U
of S, there are O,W ∈ U such that x ∈ O and y ∈ W . We claim that
N([α],U ′, U ∩O, V ∩W ) ⊆ N([α], U, V ), where U ′ = U ∪ {U ∩O, V ∩W}. For
if, let β ∈ N([α],U ′, U ∩O, V ∩W ). We have β ' λ ∗ µ ∗ α ∗ µ′ ∗ λ′, where λ is
a path in U ∩O by λ(1) = x, µ ∈ π(U ′, x), λ′ is a path in V ∩W by λ′(0) = y
and µ′ ∈ π(U ′, y). Since X is small loop space, there are η : I −→ U ∩ O and
η′ : I −→ V ∩W such that µ ' η and µ′ ' η′. Hence β ' λ ∗ η ∗ α ∗ η′ ∗ λ′.
Since λ ∗ η is a path in U ∩ O and η′ ∗ λ′ is a path in V ∩ W , we have
[β] = [(λ ∗ η) ∗ α ∗ (η′ ∗ λ′)] ∈ N([α], U, V ), which implies that πlS is finer
than πwS, as desired.

Strong small loop transfer (SSLT for brevity) spaces were introduced for the
first time by Brodskiy et al. to determine the condition for coincidence of the

Lasso topology and the Whisker topology on X̃ [5, Theorem 4.11]. We recall
that a space X is called an SSLT space if for every x0, x ∈ X and for every
open neighborhood U of X containing x0, there is an open neighborhood V
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containing x such that for every loop β in V based at x and for every path α
in X from x0 to x, there is a loop γ in U based at x0 such that α∗β ∗α−1 ' γ.

If the two topologies on the fundamental groupoid are equivalent, then so are
they on the fundamental group. Now Theorem 4.11 in [5] implies the following
corollary.

Corollary 3.5. For a connected and locally path connected space X, if topo-
logical groupoids πlX and πwX are equivalent, then X is an SSLT space.

Note that every locally path connected and semilocally simply connected
space is SSLT, but the converse is not necessarily true [15], and so the Corollary
3.5 is a partial converse of Proposition 3.2.

4. Locally triviality of topological fundamental groupoid

In this section, we prove that for locally nice spaces, the topological funda-
mental groupoid is locally trivial. Moreover, through examples, we demonstrate
that these conditions are essential. It should be noted that in [9, Corollary 2.9
and Remark 2.12], the authors proved the local triviality of the fundamen-
tal groupoid for the topologies considered there—namely, the compact-open
topology and the universal cover topology.

Unlike the Lasso and Whisker topologies, when the space is not locally nice,
the fundamental groupoid equipped with the compact-open or universal cover
topology is not necessarily a topological groupoid. Perhaps for this reason, no
example of a space with a non-locally trivial topological fundamental groupoid
is provided in [9].

A surjective map p : X −→ Y is called a local homeomorphism if for a given
x ∈ X there exists an open neighborhood U ⊆ X such that p(U) ⊆ Y is open
and p|U : U −→ p(U) is a homeomorphism.

Definition 4.1. [6] A topological groupoid G is called locally trivial if for
each object x, the restriction of the target (source) map T : Gx −→ G0 (S :
Gx −→ G0) is a local homeomorphism.

Theorem 4.2. If X is locally path connected and semilocally simply con-
nected, then πwX (πlX) is locally trivial i.e., for each x ∈ X , the target map
T : (πwX)x → X defined by T ([α]) = α(1) is a local homeomorphism.

Proof. Since X is semilocally simply connected, πlX and πwX are equivalent.
So it suffices to show that T : (πwX)x → X is a local homeomorphism.
Let [α] ∈ (πwX)x and N([α], U, V )∩(πwX)x be an open neighborhood of [α] in
(πwX)x, where α is a path from x to y. SinceX is semilocally simply connected,
there are simply connected neighborhoods W and W ′ containing x and y,
respectively. Let U ′ = U ∩W , V ′ = V ∩W ′ and O = N([α], U ′, V ′)∩ (πwX)x.
Then we have [α] ∈ O ⊆ N([α], U, V ) ∩ (πwX)x. Since T (α) = α(1) = y ∈ V ′,
α ∈ O and the map T takes each member of O (which is obtained from the
concatenation of the path α by a path in V ′) to its endpoint (which is a member
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of V ′ connected to α(1)), T (O) is the path component of V ′ containing α(1)
which is open because X is locally path connected.
Now we show that T |O : O → T (O) is a homeomorphism. Let [β], [γ] ∈ O with
β(1) = γ(1). We have β ' λ ∗ α ∗ µ and γ ' λ′ ∗ α ∗ µ′, where λ, λ′ are paths
in U ′ with λ(0) = λ′(0) = x and µ, µ′ are paths in V ′ with µ(1) = µ′(1). λ
and λ′ are loops in U ′ ⊆W which implies λ ' λ′. Also µ ' µ′ since µ ∗ (µ′)−1

is a loop in V ′ ⊆ W ′. Therefore [β] = [γ] and hence T |O is injective. Since
the target map is continuous, it suffices to show that T |O is an open map. Let
N([β], L,K) be an open basic neighborhood in O, then T (N([β], L,K)) is open
because it is the path component of K containing β(1).

�

Remark 4.3. In [3] it is proved that by the lifted topology on πX, the target
map T : (πX)x −→ X is a covering map, for every x ∈ X, and so is a
local homeomorphism. When the given space X is locally path connected and
semilocally simply connected, the lifted topology and the Lasso topology are
equivalent [13], and so we can consider Theorem 4.2 as a result of Proposition
3.2 and [3, Theorem 1]

Let H be the Hawaiian earring space. We want to prove that πlH and πwH
are not locally trivial. But we cannot provide a single proof for both at once
because in Example 3.3 we have shown that πlH and πwH are not equivalent.

Example 4.4. T : (πlH)x → H is not a local homeomorphism.

Proof. For an arbitrary [α] ∈ (πlH)x, let O = N([α],U , U, V ) ∩ (πlH)x be an
open neighborhood of [α]. We show that T |O : O → T (O) is not one to one.
Let y be the common point of all circles and W ∈ U be an open neighborhood
of y. There exists 0 < N ∈ N such that for all n > N , αn lies in W , where αn

denotes the circle of radius 1
n . Let λ be a path from x to y and

For n 6= m > N , define γ = α∗(λ∗αm∗λ−1) and β = α∗(λ∗αn∗λ−1). Since
[λ∗αm∗λ−1], [λ∗αn∗λ−1] ∈ π1(U , x), we have [β], [γ] ∈ N([α],U , U, V )∩(πlH)x.
The contradiction arises from that

T ([γ]) = T ([β]),

while [γ] 6= [β] because [αn] 6= [αm]. �

Example 4.5. T : (πwH)x → H is not a local homeomorphism.

Proof. Let N(α1, U, V )∩(πwH)x be an open neighborhood of [α1]. There exists
0 < N ∈ N such that for all m, k > N , αm and αk lie in V . For n 6= m > N ,
define γ = α1 ∗ αm and β = α1 ∗ αn. Since [β], [γ] ∈ N([α], U, V ) ∩ (πlH)x and

T ([γ]) = T ([β]),

we have a contradiction because [γ] 6= [β].
�
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In the following example, we show that local path connectedness is also
essential in Theorem 4.2. Although it is known that when a space is not
locally path connected, the fundamental groupoid cannot be endowed with a
topological groupoid structure, and locally trivial groupoids are assumed to be
inherently topological, it is nevertheless interesting to present an example of a
non-locally path connected space whose topologized fundamental groupoid is
not locally homeomorphic to the space itself.

Let C be the comb space: The subset C of the Euclidean plane formed by the
union of the x-axis, the line segment with interval [0, 1] of the y-axis, and the
sequence of segments with endpoints ( 1

n , 0) and ( 1
n , 1) for all positive integers

n. Concerning the relative topology, C is path connected. It is therefore
connected, but not locally path connected at any point of the interval {0}×(0, 1]
since each open disk centered at one of these points intersects C in a union of
parallel segments, forming a disconnected set.

Example 4.6. T : (πwC)x → C is not a local homeomorphism.

Proof. Let α be a path in {0} × [0, 1] from y = (0, 0) to x = (0, 1) and let
O = N([α], U, V ) ∩ (πwC)x be an open neighborhood of [α]. We show that
T |O : O → T (O) is not open. Let V ′ be an open subset of V containing
x = (0, 1) such that V ′ ∩ ([0, 1] × {0}) = ∅. T (N([α], U, V ′)) is the path
component of V ′ containing α(1) i.e. T (N([α], U, V ′)) ⊆ {0}× (0, 1] and hence
it is not open in C.

�

Remark 4.7. It is shown in [13] that πwH is not a topological fundamental
groupoid. Also, if X is a locally path connected space, πlX is a topological
groupoid [12] and we cannot use the term topological fundamental groupoid
for πlC.

Corollary 4.8. The fundamental groupoids πlH, πwH, πlC and πwC are not
locally trivial.

Definition 4.9. [10] A topological groupoid G is called étale if the target
(source) map T : G −→ G0 (S : G −→ G0) is a local homeomorphism.

Note that in the definition of locally trivial groupoid, the target map is
restricted to Gx, but in the definition of étale groupoid, the target map is
restricted to the entire groupoid G.

Theorem 4.10. For a path connected space X, πlX is not étale.

Proof. Let α ∈ πX(x, y). For every open subset O ⊆ πX containing α, we
prove that T |O can not be a homeomorphism. Consider a basic open neigh-
borhood N([α],U , U, V ) ⊆ O, where U is an open cover of X and U, V ∈ U .
Choose a point x 6= z ∈ U that is connected to x by a path, named λ. Obvi-
ously, [λ ∗ α] ∈ N([α],U , U, V ) while [λ ∗ α] 6= [α] and T ([λ ∗ α]) = T ([α]).

�
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In a similar way, we have this result for the Whisker topology.

Corollary 4.11. For a path connected space X, πwX is not étale.

Remark 4.12. It should be noted that in the previous corollary, the path
connectedness is not critical, and the existence of only one nonconstant path
in the space X is sufficient for the proof process to proceed correctly.

5. Conclusions and future works

In this paper, we compare two recently introduced topologies on the funda-
mental groupoid: the Lasso topology [12] and the Whisker topology [13]. We
show that for locally path connected and semilocally simply connected spaces,
these two topologies concide, and the converse is not necessarily true. The
equality of these two topologies on the fundamental groupoid of the space X
makes X a strong small loop transfer space.

Furthermore, we prove that the fundamental groupoid endowed with either
of these topologies is locally trivial when the underlying space is locally path
connected and semilocally simply connected. We also provide examples illus-
trating that these conditions are essential. Finally, we demonstrate that the
fundamental groupoid equipped with the Lasso or Whisker topology is not nec-
essarily étale. Since the fundamental groupoid with these topologies forms a
topological groupoid for a broader class of spaces than just locally nice spaces,
comparing these topologies and analyzing their properties is of greater signifi-
cance than for other known topologies [3, 9].

Given that the bases for the Lasso and Whisker topologies are explicit, it
appears promising to investigate additional topological properties of the funda-
mental groupoid–such as Hausdorffness, local path connectivity, and even local
compactness or compactness–as directions for future research.

6. Aknowledgement

The author is very grateful to the referees for their valuable comments.

7. Funding

This research was supported by a grant from Golestan University; (No.
P4031670).

8. Conflict of interest

The authors declare no conflict of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the
writing of the manuscript, or in the decision to publish the results.



314 A. Pakdaman

References

[1] Brown, R. (2006). Topology and Groupoids. Deganwy, United Kingdom: BookSurge

LLC.
[2] Brown, R. (1987). From groups to groupoids: A brief survey. Bulletin of the London

Mathematical Society, 19, 113–134. https://doi.org/10.1112/blms/19.2.113

[3] Brown, R., & Danesh-Naruie, G. (1975). Topological Fundamental Groupoid
as topological Groupoid. Proc. Edinburgh Math. Soc., 19, 237–244.

https://doi.org/10.1017/s0013091500015509
[4] Brodskiy, N., Dydac, J., Labuz, B., & Mitra, A. (2012). Covering maps

for locally path-connected spaces, Fundamenta Mathematicae, 218, 13–46.

https://doi.org/10.4064/fm218-1-2
[5] Brodskiy, N., Dydac, J., Labuz, B., & Mitra, A. Topological and uniform structures on

universal covering spaces, arXiv:1206.0071.

[6] Ehresmann, C. (1959). Catégories topologiques et catégories différentiables, Colloque
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