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ABSTRACT. In the present paper the linear oscillator in R® with z =constant
has been considered. The aim is to determine the necessary conditions for
the persistence of periodic solutions under discontinuous perturbations. A new
approach based on a computational method has been used. At the end we

apply our method on an example.
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1. INTRODUCTION

Over the years, there has been growing interest and need for the modeling, anal-
ysis and control of non-smooth dynamical systems characterized by discontinuous
charges in system properties. A particular case is represented by dynamical system,
discontinuous with respect to the state variables. The first studies on discontinuous
differential equations with based on geometrical theory, referred to Filippov ([1]).
Here we use the definitions and notations that was used in [4]. We are faced with
two different field, one of them is continuation theory and another is differential

equations with discontinuous right hand side. Both fields have a large share in
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mathematical researches, for example see [2, 3]. For the purpose of this paper we
need to introduce the Filippov’s theory which we give in the follow:

Suppose that D is a domain in R™ and h : D—R whit heC" (D, R),r > 1. Defining
Vi and V5 and ¥ as:

Vi = {z€R"|h(z) < 0}, Vo = {z€R"|h(z) > 0},

and
¥ = {zeR"|h(x) = 0}.

Let f1 : D—R" and fy : D—R" be C",r > 1, functions. we consider the differential

equation:
(1.1) = f(x), x(to) = xo.

where:

(1) f has the form

fi(z) zeWn
fz) =
fg (ZZ?) xr e ‘/2
(2) The normal of the plane ¥, given by n(x) = [Dh(x)] is chosen such that
it always hold that n(x) # 0, for all € 3.
(3) There exist functions g; : D; — R™ for i = 1,2 with following properties:
(a) V;UXCD,;fori=1,2
(b) 91,92 € CT7T > 1
(¢) gi=fionV; fori=1,2.
Fillipov has been shown that system (1.1) with above properties has a solution in

sense of Fillipov definition of solution.

Definition 1.1. Function x : I — R? where I is an interval in R is a solution
of differential inclusion & € F(z) if x be almost everywhere continuous and &(t) €

F(z(t)) for almost all t € I, where

{fi(2)} reV,
(1.2) Fz)={ {(1-Nfi(2)+ Me@ e (0,1)} zex
{fala)} reVs
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Definition 1.2. Let x : I — R™ be a solution of system (1.1) and zx € X be a
point such that x(tx) = xs, for some ts € I, we say that the solution x(t) crosses

the hypersurface 3 transversally at xs if
(1.3) n?(zs).g1(zs)n" (z5).92(xs) > 0.

In fact the condition (1.3) is a necessary condition for transversal intersection,
that in [4] considered as a definition for transversally.

(For more information about Fillipov’s theory see [1]).

In this paper we consider periodic solutions of linear oscillator in the plain z =
constant and then we study the effect of 3-dimension discontinuous damping on
their periodic solutions and introduce a method for persistence of some periodic
solutions, also our method can compute the value of period of the periodic solution of
perturbed system. This paper extend the B.Mehri's paper ([5]) for introducing the
necessary conditions for existence of periodic solutions for discontinuous perturbed
systems. In fact they use Implicit function theorem and use the Taylor expansion
to finding their necessary conditions for existence of periodic solutions, here we use
their idea to introduce a method for analyze a class of three dimension discontinuous
system which has a pure imaginary pair and a simple zero eigenvalue in the linear
part.

Consider three dimension discontinuous system

$:—y+P(.’L',y,Z)
(1.4) y=z+Q(z,y,2)
Z=R(z,y,2)

where

Pi(z,y,2) y>0;
Pg(l’,y,Z) y<0

Ql(xuyvz) y>07

P -
(z,9,2) { Orlz.y.2) <0,

R( ) Ri(z,y,2) y>0;
:L.?y’z =
R2($7yvz) y<0

and

j 2, g 2, g 2 j j i 3,7 .3,.7 .3
Pl(w,y,2) =1 o +1y 97 +13 27 4y ey ez gy g wt gy g 2
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J 24 ,.J 2 J 2, .. 2 J 2, . 2 J
—|—7’10’ixy +7"117ﬂ7 y—|—r12,izz —|—r13,im z—|—rl4,iyz +r15’iy Z+7‘167ixyz,
for 5 =1,2,3 and 7 = 1,2 where

Pl=P P*=Q. P'=R rl=a *=p =1

In [5] M.Bayat and B.Mehri consider smooth P, and R and found a necessary

condition for the existence of periodic solution, but in this paper we consider
T

( P Q R ) as a discontinuous perturbation and our aim is to study the per-

sistence of periodic solutions of system of linear oscillator

under discontinuous perturbation.

Our method also can compute the period of the periodic solutions. Moreover when
the perturbation terms are complicated then the analytical methods don’t have any
performance, so in these cases the numerical methods will be important. In fact
this is in our problem, so we must use the numerical method. Therefore in the
next section we will introduce our method and will give Maple code for software

computations.

2. THE METHOD

The method is based on implicit function theorem and the work of M. Bayat and
B. Mehri ([5]), in fact by knowing the initial and final point of a part of a solution
we make a system of nonlinear equations and research for fixed points of it, the
existence of fixed points are equal to existence of periodic solutions. Moreover the
time of period can be computed.
Obviously, the linear system in (1.4) is smooth and has only periodic solutions
which are circles with centers are on the z-axis lying in a plain z = constant. Our
approach is to assume that the full system has a periodic solution close to a circular
orbit of the linear system in the plain z = 0. Therefore, we use the implicit function
theorem to establish the necessary condition in order the system (1.4) has closed

solutions in the neighborhood of the origin.
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Let ¢(0,£,7)(t) be that solution of (1.4) which has initial point x = £,y =0,z =0
at t =0 and end point z =7,y =0,z =0 at t = 7+ 7. After a time approximately

m, this solution reach to plain X : y = 0. Therefore we must consider two case:

(1) Intersect transversally ¢(0,&,n) and ;
(2) Sliding mode,

In this paper we only consider first cases.

2.1. Transversal case. Here we consider case transversal intersection. By assum-
ing transversal intersection of ¢ by ¥, this solution will have made one cycle around
the origin and will reach the point (£,0,0) provided that the following equations

are satisfied:

F1(7—17£777) = 1’1(71'-’-7‘1,6,77) -n= 07
(21) Gl(Thfan) = yl(ﬂ-+7—17€,77) = Oa
Hi(11,€,n) = z1(m +711,8,m) =0,

Fy(m2,8,m) = 2(m +72,€,m) — £ =0,
(22) G2(7-27§a77) = 92(77 + T2a€7n) = 07
H2(7-27£777) = 22(7T + 7—275777) = 07

where ¢(&,n)(m+711) = (n,0,0) € ¥ and

(xl(t7£7n)ayl(tafan)vzl(t7§7n))v 0§t<7‘l’+7’1;

() =
(& m(E) { (22(t,&,m),y2(t, &, m), 22(t,€,m)), w471 <t<2m+7 + T2

Also we must have

(M1m? +77.17%) (11,207 + v7.2m°) > 0

If we solve the system (2.1) by assuming that 7 and 7 are functions of &, say

71 =71(§) and n = n(£), then the solution curve ¢(&,n), is closed if and only if

F2(7'2a77(§)a§) = 07
(2.3) Ga(72,1(£),6) =0,
Hs(m2,m(€),€) =0,

The period of this solution is 27 4+ 71 + 75. Hence we express the following theorem:
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Theorem 2.1. The necessary conditions for existence of periodic solution for dis-

continuous perturbed system (1.4) are equal to existence of solution (§,72) for system

(2.3).

Therefore, it is important to investigate the asymptotic behavior of Fy(72,7(£),€) =
0, Ga(m2,m(&),&) = 0, Hy(72,1m(£), &) = 0 as £ — 0. Since the polynomials P;, Q;, R
for ¢ = 1,2 are of degree 3, the behavior will be done by computing the first three
derivatives of F;(7;,&,n),Gi(7:,&,m) and H;(7;,&,m) at £ =0.
Since (0,0, 0) is a fixed point for the system (1.4) so

Fl(0,0,0) = Gl(0,0,0) = HI(OaOaO) =0.
Lemma 2.2. The first derivatives of Fy,G1,Hy at (0,0,0) are given by

9£1(0,0,0) = a4 (m,0,0) =0, 2 2(0,0,0) = afg (,0,0),

%(0 0,0) = %2 (r,0,0) — 1
991(0,0,0) = 31 (m,0,0) = 0, 361 (0,0,0) = % (7,0,0),
$21(0,0,0) = %2 (7,0,0)
21(0,0,0) = Z2(,0,0),
5n-(0,0,0) = G (m,0,0)

9IL.(0,0,0) = 2 (,0,0) =0,

For convenience we put r1 =x,y1 =y and z1 = 2.

Also the derivative of x¢,ye and z¢ satisfy

Te = —ye + %(m, Y, 2)xe + %(&y, 2)ye + 68121 (x,y,2)2¢
(24) y§ = T¢ + %(az,y,z)xg + d{;il (‘T,y7 Z)yf + déQzl (fﬂ,y, Z)Zf

235 = %(Jf, Y, Z):Eg + 881?/1 ('777 Y, Z)yf + 861? (JZ, Y Z)Z{

whit the initial condition x¢ = 1,y¢ =0 and z¢ =0 at t =0 and

3P1 6P1

= _y’f]+ ('I Y,z ) (1’ Y,z )yn + (x7yaz)zﬁ
(2.5) Uy = Ty + GQI (,y, )y + ayl (x Yy 2)yn + an L2y, 2)z,
8R1 (.’L’ Y, )xn+Ty($ay7 )y’r]'i_W(xu:% ) 77

Zy =
whit the initial condition x, = 1,y, =0 and z, =0 at t = 7.

Proof: The proof is easy, it is sufficient to differentiate (1.4) and (2.1) with

respect to suitable variables.O
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Putting n = £ = 0 in systems (2.4) and (2.5) we get

Te = —Ye Ty = —Yn
Ye = ¢ ) Un = Tn
26 =0 2, =0

Then with the above initial conditions, we have

x¢(¢,0,0) = cos(t), Ye(t,0,0) =sin(t), 2(¢,0,0) =0
x’](t7070) = 7COS(t), yn(t,0,0) - 7Sin(t)7 ZT](ta()?O) =0

Hence,

981(0,0,0) = -1, 291(0,0,0) =0, 2H1(0,0,0)=0

¢ ¢ T
%}(0,0,0):0, "’5}1(0,0,0):07 %?(0,&0):0

125

Lemma 2.3. The second derivatives of Fy,Gy and Hy at (0,0,0) are as follows

(2.622171 ) o - . e
Z5.(0,0,0) =0, 2 L(0,0,0) =0 gz, (0,0,0) = 5e5,
261(0,0,0) = 1, G (0,0.0) = 1, 205 (0,0,0) = 528t

or2 (0,0,0)=0, % (0,0,0) = Fg(m,0,0), 5;2(0,0,0) = Gz
ZG0,0.0) =0, 5G(0.0.0) = 50,0, 5%(0,0.0) =
51(0,0,00 =0, %H(0,0,0) = Z5(m,0,0), %(0,0,0) = 5z

Also the derivatives of Tey, yen and zey satisfy
(2.7)

Tey = —Yey — 2011 cos?(t) + (—2au1 — a,1) sin(t) cos(t) — 221 sinQ(t)
Yen = Ten — 2011 cos?(t) + (—2B41 — Bs.1) sin(t) cos(t) — 2821 sin2(t)

Zen = —271,1 €082 (t) + (—274,1 — Y6,1) sin(t) cos(t) — 2y2,1 sin®(t)

with initial condition Tey = Yey = 2en =0 at t =0 and

The derivatives of Teg,yee and zee satisfy

Gee = —Yee + 2011 cos2(t) + 24,1 sin(t) cos(t) + 2a 1 sin(t)

(2.8) Yee = Tge + 2011 c0s?(t) + 2341 sin(t) cos(t) + 2Bs 1 sin®(¢)
Zee = 2711 cos2(t) + 2741 sin(t) cos(t) + 22,1 sin’(t)
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with initial condition T¢e = Yee = 2¢¢ =0 at t = 0.
The derivatives of Ty, Yny and zy,, satisfy
Fyy = —Ynn + 2011 €082 () + 241 sin(t) cos(t) + 2a 1 sin®(t)
(2.9) Unn = Ty + 2B1,1 cos?(t) + 284 1 sin(t) cos(t) + 2B2,1 sin?(t)
Zyy = 271,1 €082 (t) + 2741 sin(t) cos(t) + 2y2,1 sin?(t)
with initial condition x¢e = Yee = 2¢¢ =0 at t = .

Proof: Like lemma (2.2)The proof is easy, it is sufficient to differentiate (1.4)
and (2.1) with respect to suitable variables.O

in the form X = AX + b(t

The systems (2.7), (2.8) and (2.9), can be solved easily because all of them are
). So by formulas in (2.6) we have
9*H

geon (0,0,0) = =7 (71,1 +72,1),
858”(000) Frona+ 2861 + 5Pa1 — Sagn
gzg;(OOO) 2061 + S0+ SB21 + 5811,
352 (0 0,0) = 852 1 3064 1 551,1
aagl (0,0,0) = 3a21 + 3011 — 3841,
%584(0,0,0) = (31,1 +72,1)

25(0,0,0) =0, %5(0,0,0)=0, %1(0,0,0)=0
The third derivatives of Fy,G; and H; at (0,0,0) are computed in a similar way

and we will* have,

25-(0,0,0) =0, £4(0,0,0) =1, £5(0,0,0) = -

dT2IE o179

a;gl (0,0,0) = 0, gff%lg (0,0,0) = 0, gf%%ag_ (0,0,0) =0

H(0,0,0) = 0, £45:(0,0,0) =0,  244:(0,0,0) =0
a‘ig%z (0,0,0) = 2a1 1 + %54 1— 2021, aiig? (0,0,0) = 2711
261.(0,0,0) = —5Ba — $ous + 261, 2 11(0,0,0) = 201,
82?:91?3,](0, 0,0) = FPai1 — 3061 — 3061 + F21 — 5561, aijgﬁﬁ (0,0,0) = 2B11
5235%3,7(0,0,0) = %182,1 + %044,1 - %51,1 + %046,1; aifg; (0,0,0) = 2711
5oLt 0,0, 0) = -2y,

852&7 (0,0,0) = 5Z%(r,0,0), 853 £(0,0,0) = 9 (7,0,0)

25L(0,0,0) = ?2871 (,0,0), fggl (0,0,0) = Ze¥(m,0,0)

242(0,0,0) = 525 (7,0,0), ZH1(0,0,0) = Z&(x,0,0)
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597732};15 (0 0 0) 677235 (71— 0 0) 88377F31 (070»0) on 3(7T 0 0)
3 3

57#3:(0,0,0) = aﬁngw 0,0), (0,0,0) = 24(7,0,0)

24(0,0,0) = 525(,0,0),  %H(0,0,0) = Z2(,0,0)

Similar to what we do for xee, Yee, 2ee, Toe, Ynes Znes Tnns Ynn, and zp,, we can do for
£6> YE&5 <€€5 & Yn&s “n&s L Ynn nm

Teen, Yeen, Zecn> Lenn,

Yenm, Zenns Teees Yeee, 2ee¢> Tomms Ynnn A0d. 2ypn; but for stoppage from scrolling we

dont write the systems for @eey, Yeen, Zeens Tenn: Yenn, Zenn, Tece, Yeee, Zeee, Tnmms Y

and 2.
Now we have enough information to write the expansions of Fy(11,&,1n), G1(71,£,m)
and H;(7,&,n) near (0,0,0):

Fi(r1,6,m) = =6+ a16” + a2én + as&® + aan® + asné® + agt€* + azén’+
a87n2 + 3{7’2 — 37772 + ag7én,
G1(11,€,1) = b1E2+bon—2674+20T+bs & +bam> +b5nE> +-beTE+b7En* +bs T +bo TN,

Hi(11,6,m) = 1€ + cabn + 38 + can® + esn€® + c67E% + e7én® + cs™) + coTEn,

where a;, b; and ¢;, for ¢ = 1, ...,9 are dependent to a1, 35,1 and ;1 for j =1, ..., 16.
Similar to what we do for Fy,G; and Hy, we can do to write the expansion of
F5(12,&,m),G2(72,&,m) and Hs(12,£,m), but since the problem is concurrent; it is
sufficient that in expansion of Fy(71,£,n),G1(m1,&,n) and Hy(71,£,7n) we replace £
by n, 7 by £ and ;1 by rj9 for r =, 5,y and j =1, ...,16, so we will have:

Fy(1,&,m) = —n+ a1 + a2én + asn® + as€® + asn’& + agrn’+
ar&%n + asTE® + 3nT? — 377 + e,
Ga(1,&,m) = bin* +boén—2nT+26T+b3n® +ba&3+bsn*E4+-beTn? +brE2n+bs 72 +-by TN,

Ho(7,&,m) = &1n® + E2€n + E31° + €18 + &n°E + G0 + 1870 + &7E> + oL,

where @;,b; and &, for i = 1,...,9 are dependent to a2, B2 and ;o for j =1,...,16.
For stoppage from scrolling we give the coefficients in the appendix.

Therefore the problem of persistency of periodic solution under discontinuous per-
turbation is equal to solving the nonlinear system of equation (2.3). Also by solving

equation (2.3) we can compute the time of return to X.
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Theorem 2.4. Persistence of the periodic solutions of the linear system Eq.(1.4)
are independent from coefficients r; ; for r = o, 8,7y, ¢ = 3,9,12,13,14, 15,16 and
j=12.

proof: The coefficients which we give in the appendix are independent from
coefficients r; ; for r = «,f,v, © = 3,9,12,13,14,15,16 and j = 1,2, so the
conditions for persistency is independent from coefficients r;; for r = «, 8,7,
1=3,9,12,13,14,15,16 and 57 = 1, 2.
Since in these problems there exist many of parameters here we give a Maple code

for doing our computations:

3. EXAMPLE

Consider discontinuous differential equation:

fy+a:172
_ z+by? |, y<O0
@
. - 2?2 + 22
Z{ —y + dz?
z
x+ry2 , y>0
x? + 22
We have
1 2 1,8 32
Fi(0, = 1y b+ —a® — b+ (=(—=a® — Z=b*))n?
10, 5.m) = 4+3 +3 +18 o0 t(g(=ga” — b))+
1.8 1
(3 (3 a’® + EbQ))U‘f’ 2
+(}(fzba —Eaz 5 =) +an? - = —Ea
176 9 o M TRl 3
1 1 2 1 1,
Gl((),i,n)—g f§a77+@a ﬂ'+—b T+ 2—4ab+
1 1
(6(—a27r — b?m + 2ab))n® + (g(—a27( — b1 — 2ab))n
11° 2, o, 2
+(4(2a7r+3a T+ b §ab))
1 11 1 14
Hl(oai’n) gﬁ—*ﬂﬂ+ﬁa+*bﬁ+(6(4b7—Ea))n+
12 1.4 ,
(g(—ga—4bw))n+(z(§+2a+gbw))n =0.

If we solve equation Fy(0,1/2,n) = G1(0,1/2,n) = H1(0,1/2,n) = 0 we find
a = —.1474028520,b = .1129653205, and n = —2.913376624.
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Now we have

T
0.6

FIGURE 1. periodic solution for the system in (z,y) space.

Fy(7,1/2,-2.913376624) = 1.206688312—4.217835498r+6.191224674d>+32.30957725r>
+9.542222228d — 2.475597644rd,

Go(1,1/2,-2.913376624) = 2.108917750d 4 5.920974527d* 7 + 6.628288139r%7
—7.944215366dr 4+ 1.060970419d,
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Hy(7,1/2,-2.913376624) = 1.5816883127 + 23.73348077d — 12.11609146r7+

11.651139987 + 2.829254450.

By Maple computation we find that for r = —0.1399951418,d = —0.2715603496,

we have:
F5(—0.5735020721,1/2, —2.913376624) = G2(—0.5735020721,1/2, —2.913376624)

= H,(—0.5735020721,1/2,—2.913376624) = 0.

So for initial point = 1/2,y = 0,z = 0 we have a periodic solution. Also we can
see that the period of this solution is 27 — 0.5735020721.

4. CONCLUSION

In this article by using a new numerical approach, the problem of persistence of
periodic solution has been changed to existence of solution for a nonlinear algebraic
system of equations. Since the number of parameters is much so any one can fined
so many different conditions for existence of solutions for this system of equations
(Like theorem 2.4). What is important is that the conditions for exist of solution
for the system of equations is equivalent to the necessary conditions to persistence

of periodic solution for perturbed linear oscillator.

5. APPENDIX1

> restart
> forifromlto2forjfromltol6input(alphalj,i], betalj, i], gammalj, i])
>F[1]:=(1/2%&—1/2xn) « 7%+ (a[8] * Exn+al6] x 2 + 1,1] xn?) x T
—&+al] * € +af3] * € +al2]  Exn +a[T] « Ex 0 + a[4] x1* + a[5] * € x5
G[1] == (=€ +b[6] * €2 + 0+ B[1,1] * n? + b[8] ¥+ &) * T + b[1] * £2 + b[3] * £3
+0[2] % £+ b[7] % £ xn? + bA] x® + b[E] %+ €2,
H1] = (Y[, 1] &2 +7[1, 1] % n? — 25 y[1, 1] Exn) x 7+ c[1] x &2
+ 3] & = 2% e[l x Exn + cld] x 1 + c[5] %+ € + c[6] x 1 % &

]

F[2] := (1/2% & —1/2xn) * 72 + (a[8] * £ * n + a[6] * &2
+ 1,1« s —E+a[l] « 2 4 af3] * €3 +a[2 xExn
+af7] &+ n? + a[d] x 0P + af5] x €+ 1;

G[2] := (=& +b[6] x €2 +n+ B[1,1] xn> + b[8] xnx &) x T
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4 b[1] % €2 4 b[3] % €3 + b[2] * € x n + b[7] * € * >
+0[4 ]*77 +b[_5}*77*£2;
H[2) = (L1 % & +9[L 1]+ n® = 2% y[1, 1] % £ xm) + 7
efl] %2 + 3] * €% — 2% c[1] % £+ + 4]
+e[5]xnx €2+ cf6] xn? &
> solve(G[1],T) = solve(H|[1],7)(1);
> T := numer(lhs(1)) * denom(rhs(1)) — numer(rhs(1)) * denom(lhs(1));
> T := collect(simplify(T),n) :
> 1 = [fsolve(t[5] x x5 + t[4] * a* + t[3] * 23 + t[2] x 22 + ¢[1] x 21 + ¢[0] = 0,2)] :
> forifromltonops(etta)do
temp = [fsolve(F[1](n[i]) = 0)] :
ifnops(temp) > Othen
forj fromltonops(temp)dorl(i, j] := templj] : end :
end :
end :
> forifromltonops(etta)do
tau[2] := fsolve(G[2](ettali], ) = 0,7) :
ifabs(H(2|(nli], &, 7[2])) < 10~ *andabs(F[2](n[i], &, 7[2])) < 107°
thenprintr[2] : end :

end :

6. APPENDIX2

Here we give the coefficients in the formulas of Fy, Fs, G1, G2, H; and Hs:
a1 = 1/2(=(8/3)B21 — (4/3)asn — (4/3)B1,1),

as =1/2((4/3)c,1 + (8/3)ca1 + (16/3)B2.1 + (8/3)51,1),

az = 1/6((20/9)Bs 01,1 — (80/9)as, 1821 — (28/9)Bs 1021 + (3/8)as 171,17 —
(1/3)ar 104,11+ (1/6) s 10017+ (3/8)B5.171,1m —(3/8) w5, 174,17 — (9/8) B 1Ya, 1™+
(1/3)BaBiam 4 (9/8)Bs,1721m — (9/4)az 1 + (3/2)Bracam — (9/4)Bs am+
(1/6)Ba,1B2,1m — (5/2)az1 217 + (9/8) e 172,17 — (32/3) 81,1821 — (3/4)B6,172,1 —
(3/4)Br1am — (1/2)ci0,1m — (3/4)Bs,171,1 — (3/4)as 1711 — (1/12) By 1m—
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305,172,1((1/4) 72 ~1/4)+(4/9)8% 1 —(16/9)ad , —(32/3) 82,12 —(8/3)a , —(8/3)B7 , +
(8/3)0&%)1 — 366, 171)1((1/4)71’2 — 1/4) — (40/9)61)10{471 — 30&5)1’)/171((1/4)7(2 — 1/4) —
372,186,1(1/4)72 — 1/4) — (3/4)v5,172,1),

aqs =1/6((4/3)Bs1001,1 — (32/3)awa,182.1 — (3/8)as,1m11m + (3/4) o 1aa 1+
(3/4)aug 100017 — (3/8) B5,171,1m+ (3/8) a5 17417 — (3/2) s 172 y2,1 4 (9/8) Bs, 174,17 —
(3/4)BapBram — (9/8)Bs 17217 + (9/4)az1m — (3/2)Bracnam + (9/4)Bg 17—
(3/4)BaBaam + (3/2)az,1B21m — (9/8) s 1721m — (32/3)B1,182,1 — (8/3)ar 10021 +
(3/4)Bs 72,1 + (3/4)Briam + (3/4)an01m — (3/2)Bs 1711 — (3/2)as 1m2y1,14
(3/4)Bs,171,1 + (3/4)as 1m0 + 3as 1721 ((1/4)7° — 1/4) + (4/3)87 1 — (8/3)ai; —
(32/3)52 1 (8/3)01 1 (8/3)51 1 (16/3)042,1 +3B6,171,1((1/4)7* — 1/4)—
(16/3) 81,104,135, 171,1 ((1/4)7% =1/4)+372,186,1 ((1/4) 7% =1/4)—(3/2) B 177 72,1+
(3/4)as,172,1)

as =1/2((1/3)o1061m — (4/3)Ba 1001 + (32/3) s, 10821 + (44/9)Ba 10001 —
(3/8)as1v1,17m+(3/4)an jaa 17+ (7/12) gy 17— (3/8) Bs. 11 17+ (3/8) s 1va 1T+
(3/4)as 17 y2,1 + (9/8)Bs 17417 — (3/4)Baifram — (9/8)Bs5.17217 + (9/4)az 7 —
(3/2)Brpcnam + (9/4)Bsam — (3/4)Ba1 a7 + (11/6)az 1 821m — (9/8) g 172,17 —
(4/9)Ba1B6,1 + (8/9)B1106,1 + (32/3)B1,182,1 + (16/9) a1 1001 — (1/6) g 10617 +
(3/4)Br1am + (3/4)ar0am + (3/4)Be.1m*v1,1 + (3/4)as im0 + (1/6)B1,18s17m +
(3/8)Bs,176,1m™ + (8/9)az,186,1 + (16/9)B2,1061 + (8/9) s 1061 — (8/9)1,186,1 +
(1/3)52,1ﬂ6,177_(4/3)62,1"_(8/3)0‘421,1+(32/3)53,1+(8/3)a%,1+(8/3)5%,1_(40/9)0‘%,1+
(16/3)B1,10a1+(1/8)as 176,17+(3/4) Bs 1w y2,1 — (1/4) Bapas i m—(1/12) v 1 B6,17),

ag = 1/6(201171 + 454,1 - 60[2,1)7

ar = 1/2((1/3)ar 10617 + (4/3)Ba1cn,1 — (40/9) a1 82,1 — (16/9)Bacz 1+
(3/8)as1v1,1m — (11/12)ay yag 17 — (11/12)cg 1o 1 + (3/8) 8517117 —
(3/8)as1va1m— (1/4)as 172721 — (9/8) B, 17417+ (3/4) Ba1 fram+(9/8) Bs,172,1m —
(9/4)aram + (2/3)Bracam — (9/4)Bsam + (3/4)BaBaam — (3/2)1 B2, 17+
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9/8

1/6
1/6

(9/8)ag 1721 + (4/9)B1,186.1 — (8/9)Br1ce1 — (32/9)B11P21 — (8/3)ar 1001 +
(1/6)az 106,17 + (1/4)B11a7m — (3/4)aroam — (1/4)Beam®yin — (1/4)asam?y11 —
(1/6)B1,186,1m — (3/8)Bs,176,17 — (8/9)az,186,1 — (16/9)B210661 — (8/9) s 1006,1 +
(8/9)a1 1861 + (8/45)an 103 1 4 (1/12)Bs1aa1m — (1/3)B2,1 86,1 + (4/9) 57 1 —
(1/2)Bram — (4/3)ai, — (32/9)65 1 — (16/9)a3 | — (8/9)8F1 + (16/9)a3 1+
(
(
(

U — — O T T

1/3 Q104,102 10 — (1/6)0&1,10(4’154717( — (20/9)61)1&471 + (1/6)0[%710{4)171'—
1/8)as 176,1m — (1/4)Bs 17221 — (1/12)Ba 106,17 + (64/45) a1 1cva1 82,1+
1/12)&471ﬂ671ﬂ' — (7/6)ﬁ2710£1717r + (56/45)a1,1a4,1ﬂ1,1)7

ag = 1/6(—4a11 — 206,10 — 8841 + 1621 — 266.1),
b1 =1/2((4/3)az,1 + (4/3)a11 — (4/3)Ban),
by = 1/2(—(8/3)a11 + (4/3)Bs,1 + (8/3)Bs,1 — (16/3)z.1),

bs = 1/6((5/2)B1,182.17 + (9/8)72,186,1m — (3/4) B5,171.1 (7% — 2) + (1/12) 3 17 +
(5/2)B 17 + (5/2)ar1as1m + (2/3)Ba1coam + (1/6)B1r1aa1m + (9/8)as 17417 —
(9/8)as 172,17 — (5/6)Baicn 17 — (3/8) s 171,17 — (2/3) a1 B2,17+ (3/8) Be1v1,17m —
(3/8)557174717r+(22/3)a2715271—|—2a171B271+(1/6)a§717r+(7/2)a§717r+(22/9)044’101271—1—
of 1+ (3/4)ariam — (9/4)Bram — 6a11fia — (2/9)ar s — (38/9)as 141 —
(98/9)B4,182,1—(10/3) 1 1a0,1 485 174 (14/9) 81,1 a1+ (3/2)as 171,10+ (9/4) ag 1 —
(3/2)B5.172,1 + (3/2)a6,172,1 + (3/4) g 172,1 (7% — 2) — (3/4)B5,172,1 (7% — 2)+
(3/4)a,171,1 (7% — 2) — (1/2)Broam — (3/2)B5.171,1),

by = 1/6((3/2)as 1711 — (5/2)B1,182.1m — (9/8)72,1 8617 + (3/4)B5171,1 (7 —
2) — (1/4)B3 1w — (5/2)BF 17 + (3/2) a6, 1721 — (5/2) a1, 1017 + (1/4) Ba 1 +
(1/4)B1 104,17 —(9/8) g, 17417+ (9/8) s 172,17+ (5/4) Ba 100 17 — (3/2) Bs 1% y11 —
(3/2)Bs1m*y2,1 4 (3/8) s, 171,10+ (5/4) a1 B2,1m — (3/8) Bs 171,17+ (3/8) B5 174,17 +
12091021 + 201 1821 — (1/4)ai’17r — (5/2)ag’l7r+4a4,1a2’1 — a%’lw —(3/4) a1+
(9/4)Bram—601,1 81,1 —604,1 84,1 — (14/3) 84,1 821 — 81,1021 — 85 17— (3/2) 6 171,1 —
(9/4)as,1m+(3/2)B5,172,1 = (3/2) 6, 172,10 — (3/4) cv6,172,1 (12 = 2) +(3/4) B5,172,1 (7% —
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2) — (3/4)ag 1711 (7* = 2) + (3/4)Br0.17 + (3/2)B5.171.1),

bs = 1/2(—(1/3)az,1861m — (5/2)B1,18217 — (9/8)v2,1 86,17 + (4/9)a1 1061 +
Bsavia(n? =2) — (1/4) 3 17 + (14/9) a1 — (5/2)87 17 + (1/3)B1,106,1m —
a0 17+ (1/12) By 10017+ (1/4)Br 1017 —(9/8) e 17417+ (9/8) s, 172,17 —
a6,176,17 + (5/4) Baon 7+ (4/9) o1 86,1 + (3/8)as 17117 + (5/4) g1 B2 1 —

b = 1/6(—8832,1 — 4as1 + 261,1),

by = 1/2((1/3)az2,1 8617 + (1/4)ag 1m0 + (5/2)B1,18217 + (9/8)72,1 86,17 —
16/45) 101001 — (4/9)ar 061 + (1/4)8F 7 — (14/9) a1 + (5/2)8F 7 +
1/4)ag1m%y2,1 + (1/3)Br1a6,1m + (8/45)ar 104,181 + (17/6) a1z 17—
1/4)Bapcz 17+ (1/3)Br 104,17+ (9/8) a6, 17a1m — (9/8) s 172,17+ (3/8) a6, 176,17 —
17/12)Baparam — (4/9)as1fs1 — (1/4)Bs1m%y11 — (1/6)ar 10 7—
1/3)aras1f2am — (1/4)B5 17921 — (3/8)as1yiam — (5/6)as 1 B2+
3/8)Bs,1v1.1m — (3/8)Bs5,1741m — (1/6)a1 10418117 — (14/9)B2,1 86,1 + 4o 12,1 —
2/9)a1,1082.1 + (1/12)04421}177 + (5/2)04%,177 + (14/9)811861 + (16/9) s 12 1+
2/3)a%’17r —(1/4)ar11m — (9/4)Bram — (22/9) 11811 — (2/9) a1 1041 —
20/9) a1 84,1~
14/3) 84,1821 — (8/3)Br1a2,1 + (16/45)af jog 1 4 (1/2)an 17+ 53 m+ (9/4) ag 17 —
1/8)Bs176,17m+(1/12) g 1,1 7+(1/12) B4,186,17+(1/6) vy 1 B6,17+(1/6) B2, 106 1T+

(
(
(
(
(
(
(
(
(
(
(
(4/9)az 1061 — (3/4)Br0,17),
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bg = 1/6(16032,1 + 8,1 — 41,1 + 4ag1);
a1 = (1/2)7 (1,1 +72,1),

ez = 1/6(4y2,182.1m + 37v6,172,17 + (1/3)va1B8a17 + 47118217 + 27218117 +
271,181, 1T +H4y8 142711041 T+376,171,1T—(16/3) v4,1 82,1 —475,172,1+(26/3) v2, 10021 —
(1/3)ya001,17m—(2/3)72,1 821 —(1/3)va 102 17T+ 272 10 1 7+ 27111 — (14/3) 71,1021 +
296,174,1+(2/3) 711011 — 27951711 — (8/3)74,181.1 +(26/3)v2, 1011 — (4/3)va 1041 +
(10/3)v1,1B4.1)s

ca =1/6(—2v11,1+ (2/3)72,182,1 — 27a,10,1 — 2796,174,1 — (4/3)v2,1000,1 — 481 +
dy11B82,1m+472,1 B2 1 +271,1 81,1+ 2721 11T+ 271 10 1T+ 292 104 1T+ 2795 1711+
dvs172,1 — (14/3)y2,100,1 — (4/3)y1002,1 + (2/3)71,1841 — (14/3)y11001),

cs = 1/2(—4v2,1 8217 —3%6,172,17 + (10/9) a6, 174,1 — 41,1 82,17 — (2/3) a6, 172,17 —
(2/3)ag171,1m—27v2,1 0117 — 2711 51,1m — 481 — 271 104 1T —3Y6,171,1T + 84,1 82,1 +
47y5,172,1 — (82/9)v2,1002,1 + (2/3)72,1 84,1 — 2721041 — (2/3)75 1 — (10/9) B6,171,1 —
29111 + 6711021 — 2961741 — (2/3) 10011 + 251711 + (2/9)B6 1721 + 441511 —
(26/3)y2,1001,1 + 27v4,104,1 — (10/3)71,184,1),

c6 = 1/2((4/3)v2,1 82,17 +276,17217—(2/3) 6, 174,1+(4/3)v1,1B2,17+(2/3) g 172,17+
(2/3)ag,171,17m+(2/3) 72,1 81,17 +(2/3)71,1 81,17 +4y8,1+(2/3) 71,1041 T+H2%6 171,17 —
(16/3)74,182,1—475,172,1+(20/3) 72,1021 +(2/3) 72,1 84,1 +(2/3)v2, 104,17+ (4/3) 71,1+
(2/3)76 1+ (10/9)Bs,171,1 — (2/3)711,1 —4y1,102,1 +276,174,1 +271,100,1 — 295,171,1 —
(2/9)B6,1721 — (8/3)ya1B1,1 + (22/3)v2,101,10 — (2/3)ya00,1 + 271,1B4,1).

The coefficients in the formulas of Fy, Hs and G5 are similar with this difference

that we must replace —, ; with —, .
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