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Abstract. In this article, we have shown, for the add-point monad T, the

partial morphism category Set
⇀

is isomorphic to the Kleisli category SetT. Also

we have proved that the category, SetT, of T-algebras is isomorphic to the

category Set∗ of pointed sets. Finally we have established commutative squares

involving these categories.
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1. Introduction

The partial morphism categories [1, 4, 8, 9, 10, 11, 12, 13], the Kleisli categories

[1, 6, 7, 14], the categories of algebras [1, 2, 3, 7] and the pointed categories [1, 5],

are all useful categories with a wide range of applications.

In this article we have established a relation between the above mentioned cat-

egories, when the base category is the category Set of sets and functions, and the

monad is what we have called the add-point monad.

In Section 2, we have defined the add-point monad and we have given functors

between the category, Set
⇀

, of partial functions and the Kleisli category SetT. We
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have then shown that these functors are inverses of each other, proving the two

categories are isomorphic.

In Section 3, we have given functors between the category, SetT, of T-algebras,

and the category Set∗ of pointed sets. We have then shown that these functors are

inverses of each other, proving the two categories are isomorphic.

Finally in Section 4, we have given functors from SetT to SetT and from Set
⇀

to

Set∗ and we have established commutative squares involving these categories.

2. Set
⇀

and SetT are Isomorphic

Definition 2.1. The partial morphism category, Set
⇀

, associated to the category Set

of sets and functions has the same objects as Set, with morphisms f
⇀

= [(if , f)] :

X → Y equivalence classes of pairs (if : Df → X, f : Df → Y ) where f is a

function and if is a mono. Equivalence of (if , f) and (ig, g) means that there is an

isomorphism ϕ for which if = ig ◦ ϕ and f = g ◦ ϕ.

The composition of morphisms X
f
⇀

// Y
g
⇀

// Z is defined by g
⇀ ◦ f⇀ =

[(ig, g)] ◦ [(if , f)] = [(if (f−1(ig)), g(i−1
g (f)))], where f−1(ig) is the pullback of ig

along f , etc; and the identity morphism on X is defined to be [(1X , 1X)].

Definition 2.2. The add-point monad T = (T, η, µ), consists of the endofunctor

T : Set→ Set, where T (X) = X t 1 and T (f) = f t 1; the natural transformation

η : I → T , where ηX = ν1 : X → X t 1 is the first injection of the coproduct, and

the natural transformation µ : T 2 → T , where µX = 1⊕ ν2 : (X t 1) t 1→ X t 1,

with ν2 the second injection of the coproduct.

Definition 2.3. Let T be the add-point monad. The Kleisli category SetT has sets

as objects, and a morphism f̂ : X → Y corresponds to a morphism f : X → Y t 1

in Set. The identity morphism on X is 1X = η̂X : X → X, and the composition of

morphisms X
f̂ // Y

ĝ // Z is defined by ĝ ◦ f̂ = ̂µZ ◦ (g t 1) ◦ f .

Remark 2.4. For any pair (if , f) where f is a function and if is a monomorphism,

there is a unique morphism f̄ making the following square a pullback in Set.
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Df

if

��

f // Y

ν1

��
X

f̄

// Y t 1

f̄ is defined by:

f̄(x) =

ν1f(x′) if x = if (x′)

1 otherwise

and if ḡ : X → Y t 1 is a morphism such that the following square is a pullback,

Df

if

��

f // Y

ν1

��
X

ḡ
// Y t 1

then for x = if (x′), we have ḡ(x) = ḡif (x′) = ν1f(x′) = f̄(x); and for x 6∈ if (Df ),

ḡ(x) = 1, since otherwise there is y ∈ Y such that ḡ(x) = y which implies x = if (x′)

for some x′ ∈ Df and that is a contradiction. Hence ḡ = f̄ .

Proposition 2.5. The map α : SetT → Set
⇀

that acts like identity on objects and

takes each morphism f̂ : X → Y to a morphism f∗
⇀

= [(if∗ , f
∗)] : X → Y , where

(if∗ , f
∗) is obtained by the pullback,

Df

if∗

��

f∗ // Y

ν1

��
X

f

// Y t 1

in Set, is a functor.

Proof. It is easy to verify that α is well-defined and preserves identities. To show

α preserves composition, let f̂ , ĝ : X → Y be two morphisms in SetT and set

ĥ = ĝ ◦ f̂ = ̂µZ(g t 1)f . Then α(ĥ) = h∗
⇀

, where the following square is a pullback

in Set.

Dh∗

ih∗

��

h∗ // Z

ν1

��
X

h

// Z t 1

On the other hand we have the composition α(ĝ) ◦ α(f̂) = g∗
⇀
◦ f∗

⇀
= [(if∗ ◦

(f∗)−1(ig∗), g
∗ ◦ (ig∗)

−1(f∗))] with the following pullback squares.



140 S. N. HOSSEINI, A. ILAGHI-HOSSEINI

E

(f∗)−1(ig∗ )

��

(ig∗ )−1(f∗)
// Dg∗

ig∗

��

g∗ // Z

ν1

��

1 // Z

ν1

��

Df∗

if∗

��

f∗
// Y

ν1

��

g
// Z t 1

ν′1
��

X
f

// Y t 1
gt1
// (Z t 1) t 1

µZ

// Z t 1

Hence, we have the following pullback squares.

E

if∗o(f
∗)−1(ig∗ )

��

g∗◦(ig∗ )−1(f∗)
// Z

ν1

��
X

µZ(gt1)f

// Z t 1

Dh∗

ih∗

��

h∗ // Z

ν1

��
X

µZ(gt1)f

// Z t 1

Since pullbacks are unique up to isomorphism, [(if∗◦(f∗)−1(ig∗), g
∗◦(ig∗)−1(f∗))]

= [(ih∗ , h
∗)] = α(ĝ ◦ f̂). The result then follows. �

Proposition 2.6. The map β : Set
⇀
→ SetT that acts like identity on objects and

takes each morphism f
⇀

: X → Y to a morphism ̂̄f : X → Y , where f̄ : X → Y t 1

is the unique function obtained by the pullback

Df

if

��

f // Y

ν1

��
X

f̄

// Y t 1

in Set, is a functor.

Proof. It is easy to verify that β is well-defined and preserves identities. To show

β preserves composition, let f
⇀
, g
⇀

: X → Y be two morphisms in Set
⇀

and set

h
⇀

= g
⇀ ◦ f⇀ = [(if ◦ f−1(ig), g ◦ (ig)

−1(f))]. We have β(g
⇀ ◦ f⇀) = ˆ̄h, with the following

pullback square.
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E

if◦f−1(ig)

��

g◦(i−1
g )(f)

// Z

ν1

��
X

h̄

// Z t 1

On the other hand we have β(g
⇀

)◦β(f
⇀

) = ̂µZ(ḡ t 1)f̄ with the following pullback

squares.

E

f−1(ig)

��

(ig)−1(f)
// Dg

ig

��

g // Z

ν1

��

1 // Z

ν1

��

Df

if

��

f // Y

ν1

��

ḡ // Z t 1

ν́1

��
X

f̄

// Y t 1
ḡt1
// (Z t 1) t 1

µZ

// Z t 1

So we have the following pullback squares.

E

if◦f−1(ig)

��

g◦(i−1
g )(f)

// Z

ν1

��
X

µZ(ḡt1)f̄

// Z t 1

E

if◦f−1(ig)

��

g◦(i−1
g )(f)

// Z

ν1

��
X

h̄

// Z t 1

By Remark 2.4, h̄ = µZ(ḡ t 1)f̄ . The result then follows. �

Theorem 2.7. The categories Set
⇀

and SetT are isomorphic.

Proof. We show that the above functors α and β are inverses of each other.

It is Obvious that α ◦ β is identity on objects. Now let f
⇀

be a morphism in Set
⇀

.

We have α ◦ β(f
⇀

) = α( ˆ̄f) = f
∗⇀

with the following pullback squares in Set.

Df

if

��

f // Y

υ1

��
X

f̄

// Y t 1

Df̄∗

if̄∗

��

f̄∗ // Y

υ1

��
X

f̄

// Y t 1
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Since pullbacks are unique up to isomorphism, we have f
∗⇀

= [(if∗ , f
∗
)] =

[(if , f)] = f
⇀

. Hence α ◦ β = 1
Set
⇀ .

Next we show β ◦α : SetT → SetT is also the identity functor. Obviously it is on

objects. Let f̂ : X → Y be a morphism in SetT. We have β ◦ α(f̂) = β(f∗
⇀

) = ˆ̄f∗

with the following pullback squares in Set.

Df

if∗

��

f∗ // Y

υ1

��
X

f

// Y t 1

Df∗

if∗

��

f∗ // Y

υ1

��
X

f̄∗
// Y t 1

By Remark 2.4, we have: f̄∗ = f . Hence β ◦ α = 1SetT . �

3. Set∗ and SetT are Isomorphic

Definition 3.1. The category Set∗ of pointed sets has as objects the pairs (X,x0),

where X is a set and x0 ∈ X, and as morphisms the point-preserving functions

(X,x0)
f // (Y, y0).

Definition 3.2. Let T be the add-point monad, the category of T-algebras, SetT,

has (X,h) as objects where X is a set and the T-algebra X t 1
h // X is a

function such that h ◦ ηX = 1X and h ◦ µX = h ◦ (h t 1), and a morphism from

(X,h) to (Y, h′) is a function f : X → Y such that f ◦h = h′ ◦ (f t1). Composition

and identities are as in sets.

Remark 3.3. Let f : (X,h) → (Y, h′) be a morphism in SetT. Then f ◦ h =

h′ ◦ (f t 1) and so f(h(1)) = h′(f t 1)(1) = h′(1).

Proposition 3.4. The map γ : SetT → Set∗ which takes the object (X,h) to

the object (X,h(1)) and the morphism f : (X,h) → (Y, h′) to the morphism f :

(X,h(1))→ (Y, h′(1)), is a functor.

Proof. By Remark 3.3, γ is well-defined on objects; the rest follows easily. �

Remark 3.5. For a morphism f : (X,x0) → (Y, y0) in Set∗, and x̂0 the constant

function with value x0, we have (1Y ⊕ ŷ0) ◦ (f t 1) = (1Y ◦ f) ⊕ (ŷ0 ◦ 1) = f ⊕ ŷ0

= (f ◦ 1X)⊕ (f ◦ x̂0) = f ◦ (1X ⊕ x̂0). Therefore, the following diagram commutes.
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X t 1

1X⊕x̂0

��

ft1 // Y t 1

1Y ⊕ŷ0

��
X

f

// Y

Proposition 3.6. The map δ : Set∗ → SetT that takes the object (X,x0) to the

object (X,h), where h = 1X ⊕ x̂0 : X t 1 → X; and the morphism f : (X,x0) →
(Y, y0) to the morphism f : (X,h)→ (Y, h′), is a functor.

Proof. δ is well-defined by Remark 3.5. The rest follows easily. �

Theorem 3.7. The categories Set∗ and Set
T are isomorphic.

Proof. We show that the above functors δ and γ are inverses of each other. First for

each (X,x0) in Set∗, we have γ◦δ(X,x0) = γ(X,h = 1X⊕x̂0) = (X,h(1)) = (X,x0).

So γ ◦δ is identity on objects. It follows easily that it is also identity on morphisms.

Hence, γ ◦ δ = 1Set∗ .

Next we show δ ◦ γ : SetT → SetT is also the identity functor. For each (X,h) in

SetT we have δ ◦ γ(X,h) = δ(X,h(1)) = (X, 1X ⊕ ĥ(1)) = (X,h). So δ ◦ γ acts like

identity on objects. It can be easily seen that it acts like identity on morphisms.

So δ ◦ γ = 1SetT . �

4. A Relation Between SetT, Set
T, Set

⇀
and Set∗

Proposition 4.1. The map ϕ : SetT → SetT that takes the object X to the object

(Xt1, µX) and the morphism f̂ : X → Y to the morphism f̃ = f⊕ν2 : (Xt1, µX)→
(Y t 1, µY ), is a functor.

Proof. Straightforward. �

Proposition 4.2. The map ψ : Set
⇀
→ Set∗ that takes the object X to the object

(X t 1, 1) and the morphism f
⇀

: X → Y to the morphism f̄ ⊕ ν2 : (X t 1, 1) →
(Y t 1, 1), where f̄ is obtained by the pullback

Df

if

��

f // Y

ν1

��
X

f̄

// Y t 1

is a functor.
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Proof. Straightforward. �

Theorem 4.3. We have the following commutative diagrams of functors.

SetT

1SetT

///
''

ϕ ///

��

α // Set
⇀

ψ ///

��

β // SetT

ϕ

��
SetT

1
SetT

///

77γ
// Set∗

δ

// SetT

Set
⇀

1
Set
⇀

///
''

ψ ///

��

β // SetT

ϕ ///

��

α // Set
⇀

ψ

��
Set∗

1Set∗

///

77δ

// SetT
γ

// Set∗

Proof. We only need to show the commutativity of the squares. For f̂ : X → Y

a morphism in SetT, we have (ψ ◦ α)(f̂) = ψ(f∗
⇀

) = f̄∗ ⊕ ν2 with the following

pullback squares in Set.

Df∗

if∗

��

f∗ // Y

ν1

��
X

f

// Y t 1

Df∗

if∗

��

f∗ // Y

ν1

��
X

f̄∗
// Y t 1

By Remark 2.4, f = f̄∗. Hence (ψ ◦α)(f̂) = f ⊕ ν2. On the other hand, we have

(γ ◦ ϕ)(f̂) = γ(f ⊕ ν2) = (f ⊕ ν2), therefore ψ ◦ α = γ ◦ ϕ.

Now let f
⇀

: X → Y be a morphism in Set
⇀

. We have (ϕ ◦ β)(f
⇀

) = ϕ( ˆ̄f) = f̄ ⊕ ν2

and (δ ◦ ψ)(f
⇀

) = δ(f̄ ⊕ ν2) = (f̄ ⊕ ν2). Where f̄ is the morphism making the

following square a pullback in Set.
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Df

if

��

f // Y

ν1

��
X

f̄

// Y t 1

Therefore ϕ ◦ β = δ ◦ ψ. �
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