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1. Introduction

Let Mn and Cn denote the spaces of the n × n complex matrices and n × 1

complex vectors, respectively.

For A ∈Mn, the numerical range of A is the set

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1} .

The numerical range is a useful tool for studying matrices and operators, and there

are many generalizations of this concept motivated by theory and applications. The

higher rank numerical range is an extension of the classical numerical range which

was first introduced by Choi, Kribs and Życzkowski [4].
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For a positive integer k, the rank-k numerical range of A ∈Mn is defined as

Λk(A) := {λ ∈ C : PAP = λP for some orthogonal projector P of rank k}.

This new concept is motivated by the study of quantum error correcting codes

[3, 4, 5] and has been further studied recently in [2, 7, 8, 9, 12].

In this note, we extend the notion of rank-k numerical range to k′−generalized

rank-k numerical range by using k′−generalized projectors.

A square matrix A is called an orthogonal projector if A2 = A∗ = A, therefore,

one of the natural generalizations of this concept, is k−generalized projector that is

a square matrix A such that Ak = A∗, where k > 1 [1, 6, 10, 11]. Notice that when

k = 1 this is the definition of Hermitian matrix, which, in genral, is not a projector,

so the assumption k > 1 is reasonable. Also notice that Theorem1.1 will show that

if we add assuption A = A∗ in the definition of k−generalized projector, then we

will encounter with very special matrices, even for different choices of k.

We will use the following notations: for k ∈ N and k > 1, the set of complex kth

roots of 1 shall be denoted by Ωk. The symbol σ (A) will stand for the spectrum of

the matrix A.

For a subset α of {1, ..., n}, the principal submatrix A{α} is obtained from A by

deleting all rows and columns not in α.

Let α ∈ C and S ⊂ C, then we denote the set {αs : s ∈ S} by αS.

We end this section with a characterization of k -generalized projectors.

Theorem 1.1. [1] Let A ∈Mn, k
′ ∈ N, and k′ > 1. Then the following statements

are equivalent:

1) A is a k′−generalized projector.

2) A is a normal matrix such that σ (A) ⊂ {0} ∪ Ωk′+1.

3) A is a normal matrix such that Ak′+2 = A.

2. Main results

By replacing an orthogonal projector occurring in the definition of the higher rank

numerical range with a so called k′−generalized projector, we obtain the following

generalization:
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Definition 2.1. Let A ∈ Mn, k, k
′ ∈ N, and k′ > 1. We call the following set as

k′-generalized rank-k numerical range of A.

GΛk′,k (A) := {λ ∈ C : PAP = λP for some k′ − generalized projector P of rank k}

Proposition 2.2. Let k, k1, k2, k
′, n,m be positive integers, k′ > 1 and A,A1 ∈

Mn, A2 ∈Mm. Then

(a) GΛk′,k (A) ⊃ Λk (A) ,

(b) GΛk′,k (A∗) = GΛk′,k (A),

(c) GΛk′,k (A1) ∪GΛk′,k (A2) ⊂ GΛk′,k (A1 ⊕A2) ,

(d) GΛk′,k1 (A1) ∩GΛk′,k2 (A2) ⊂ GΛk′,k1+k2 (A1 ⊕A2) .

Proof. The first two assertions can be verified readily.

For the part (c) consider that if λ ∈ GΛk′,k (A1) , then there exists k′−generalized

projector P1 of rank k such that P1A1P1 = λP1. Let P = P1⊕0m, then P (A1 ⊕A2)P =

λP. Similarly, it can be shown that GΛk′,k (A2) ⊂ GΛk′,k (A1 ⊕A2) .

In the case (d) assume that λ ∈ GΛk′,k1
(A1)∩GΛk′,k2

(A2) , therefore there exist

k′−generalized projectors P1 and P2 of ranks k1 and k2, respectively, such that

P1A1P1 = λP1 and P2A2P2 = λP2. It is clear that P = P1⊕P2 is a k′−generalized

projector of rank k1 + k2 such that P (A1 ⊕A2)P = λP. �

Proposition 2.3. Let A ∈Mn, k, k
′ ∈ N, and k′ > 1. Then the following statements

are equivalent:

(a) λ ∈ GΛk′,k (A) .

(b) There exist b1, · · · , bk ∈ Ωk′+1 and unitary matrix U ∈ Mn such that

(U∗AU) {1, 2, · · · , k} = λdiag
(
{bi}ki=1

)
.

(c) There exist b1, · · · , bk ∈ Ωk′+1 and X ∈ Mn,k where X∗X = Ik and

X∗AX = λdiag
(
{bi}ki=1

)
.

(d) There exist b1, · · · , bk ∈ Ωk′+1 and orthonormal vectors u1, · · · , uk ∈ Cn

such that 〈Aui, uj〉 = λbiδij .

Proof. It is clear that parts (b), (c) and (d) are equivalent. So we only prove

equivalency of (a) and (b).

(a ⇒ b): Assume that λ ∈ GΛk′,k (A) , then there exist a k′−generalized pro-

jector P of rank k such that PAP = λP. Now by Theorem 1.1 there exist unitary

matrix U and diagonal matrix Λ such that P = UΛU∗ and σ (Λ) ⊂ {0} ∪ Ωk′+1.
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We know that rank (P ) = rank (Λ) , therefore there exist b1, · · · , bk ∈ Ωk′+1 such

that Λ = diag
(
{bi}ki=1

)
⊕ 0 and hence P = U

(
diag

(
{bi}ki=1

)
⊕ 0
)
U∗. Finally,

PAP = λP implies that (U∗AU) {1, 2, · · · , k} = λdiag
(
{bi}ki=1

)
.

(b⇒ a): The proof is similar to that of (a⇒ b). �

Corollary 2.4. Let n, k ∈ N, k′ > 1 and A ∈Mn. Then

1) If A is non-normal, then GΛk′,n(A) is empty.

2) If A is normal, then GΛk′,n(A) consist of all complex scalars s such that

σ(A) ⊂ sΩk′+1.

Proposition 2.5. Let A ∈Mn, k, k
′ ∈ N, k′ > 1 and λ ∈ GΛk′,k (A) . Then

(a) There exist rank-k subspace S ⊂ Cn and k′−generalized projector P such

that range (P ) = S and (PA− λIn)S⊥S.
(b) There exist rank-k subspace S ⊂ Cn and k′−generalized projector P such

that range (P ) = S and (AP − λIn)S⊥S.

Proof. (a) Assume that λ ∈ GΛk′,k (A) , therefore there exists a k′−generalized pro-

jector P of rank k such that PAP = λP. Hence there exist b1, · · · , bk ∈ Ωk′+1 and

matrix U = [u1, · · · , uk] ∈Mn,k such that U∗U = Ik and P = U
(
diag ({bi})ki=1 ⊕ 0

)
U∗,

i.e., P =
k∑

i=1

biuiu
∗
i . It is clear that for any 1 ≤ j ≤ k,

Puj =

k∑
i=1

biuiu
∗
i uj =

k∑
i=1

biuiδij = bjuj .

Let S = span {u1, · · · , uk} , a =
k∑

i=1

aiui and b =
k∑

i=1

diui be arbitrary elements of

S. Thus

〈(PA− λIn) a, b〉 =

〈
(PA− λIn)

k∑
i=1

aiui,
k∑

j=1

djuj

〉
=

k∑
i=1

ai
k∑

j=1

d̄j 〈(PA− λIn)ui, uj〉

=
k∑

i=1

ai
k∑

j=1

d̄j

〈
(PA− λIn) 1

bi
Pui,

1
bj
Puj

〉
=

k∑
i=1

ai

bi

k∑
j=1

d̄j

b̄j
〈P ∗ (PA− λIn)Pui, uj〉

= 0.

(b) Proof is similar to that of (a)
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Corollary 2.6. Let k′, k, k1, k2 be positive integers, α ∈ C, A ∈ Mn, k1 > k2, k
′ >

1, H = diag (a1, · · · , an) be a Hermitian matrix such that a1 ≤ · · · ≤ an and U ∈Mn

be a unitary matrix. Then

(a) GΛk′,k (U∗AU) = GΛk′,k (A) ,

(b) GΛk′,k1
(A) ⊂ GΛk′,k2

(A) ,

(c) GΛk′,1 (A) =
⋃

ω∈Ωk′+1

ωW (A) =
⋃

ω∈Ωk′+1

ωΛ1 (A),

(d) GΛk′,k (In) = Ωk′+1,

(e) GΛk′,k (αA) = αGΛk′,k (A) ,

(f) GΛk′,k (A) = GΛk′,k (ωA) for any ω ∈ Ωk′+1,

(g) GΛk′,k (A) ⊃
⋃

ω∈Ωk′+1

Λk (ωA),

(h)
⋃

ω∈Ωk′+1

ω [ak, an−k+1] ⊂ GΛk′,k (H) ⊂
⋃

ω∈Ωk′+1

ω[a1, an].

Proof. Proof of all parts except (h) can be deduced directly from the definitions, so

we leave them to the interested reader. The left inclusion in (h) is an immediate

result of (g) and [4, Theorem 2.4], and the right inclusion can be obtained by using

(b) and (c). �

Theorem 2.7. Let A ∈ Mn and k
′
, k are positive integers such that k

′
> 1. Then

GΛk′ ,k(A) is compact.

Proof. By parts (b) and (c) of Corollary 2.6 we deduce that GΛk′ ,k(A) is bounded.

Let {λi}∞i=1 be a sequence of complex numbers in GΛk′ ,k(A), which converges to

complex number λ. For any i = 1, 2, ... there exist unitary matrix Ui ∈ Mn and

bi1 , ..., bik ∈ Ωk′+1 such that

(U∗i AUi) {1, ..., k} = λidiag(
{
bij
}k
j=1

).

Since the set of unitary matrices is a compact subset ofMn, {Ui}∞i=1 has a convergent

subsequence {Umi}
∞
i=1 which converges to some unitary matrix U. Hence there exist

b1, ..., bk ∈ Ωk′+1 such that

(U∗AU) {1, ..., k} = λdiag({bi}ki=1).

�
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[4] M.D. Choi, D.W. Kribs and K. Życzkowski, Higher-rank numerical ranges and compression

problems, Linear Algebra and its Applications, Vol. 418 (2006) 828-839.
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