MODULE GENERALIZED DERIVATIONS ON TRIANGULAUR BANACH ALGEBRAS

MAYSAM MOSADEQ

(Received: 22 November 2013, Accepted: 26 January 2014)

ABSTRACT. Let A_1 , A_2 be unital Banach algebras and X be an A_1 - A_2 - module. Applying the concept of module maps, (inner) module generalized derivations and generalized first cohomology groups, we present several results concerning the relations between module generalized derivations from A_i into the dual space A_i^* (for i=1,2) and such derivations from the triangular Banach algebra of the form $\mathcal{T}:=\begin{pmatrix}A_1&X\\0&A_2\end{pmatrix}$ into the associated triangular \mathcal{T} - bimodule \mathcal{T}^* of the form $\mathcal{T}^*:=\begin{pmatrix}A_1^*&X^*\\0&A_2^*\end{pmatrix}$. In particular, we show that the so-called generalized first cohomology group from \mathcal{T} to \mathcal{T}^* is isomorphic to the directed sum of the generalized first cohomology group from A_1 to A_1^* and the generalized first cohomology group from A_2 to A_2^* .

AMS Classification: Primary 46L57; Secondary 46H25,16E40.

Keywords: Generalized amenable Banach algebra; Generalized first cohomology group; Module generalized derivation; Triangular Banach algebra.

1. Introduction

Let A be a Banach algebra and M be a Banach A- bimodule. A module derivation $d: A \to M$ is a linear map which satisfies d(ab) = d(a)b + ad(b) for all $a, b \in A$. The linear space of all bounded derivations from A into M is denoted by $Z^1(A, M)$. As an example, let $x \in M$ and define $d_x: A \to M$ by $d_x(a) := xa - ax$. Then d_x is a module derivation which is called inner. Denoting the linear space of inner derivations from

JOURNAL OF MAHANI MATHEMATICAL RESEARCH CENTER VOL. 2, NUMBER 1 (2013) 43-52.
© MAHANI MATHEMATICAL RESEARCH CENTER

44 M. MOSADEQ

A into M by $N^1(A, M)$, we may consider the quotient space $H^1(A, M) := Z^1(A, M)/N^1(A, M)$, called the first cohomology group from A into M.

A linear mapping $T: A \to M$ is called a *module map* if T(ab) = T(a)b. We denote by $\mathcal{B}(A, M)$ the set of all bounded linear module maps from A into M.

Recently, a number of analysts [1, 3, 9] have studied various extended notions of derivations in the context of Banach algebras. For instance, suppose that $T:A\to M$ is a module map and y is an arbitrary element of M. If we take $\delta:A\to M$ by $\delta(a):=T(a)-ay$, then it is easily seen that $\delta(ab)=\delta(a)b+ad_y(b)$ for every $a,b\in A$. Therefore considering the relation d(ab)=d(a)b+ad(b) as an special case of $\delta(ab)=\delta(a)b+ad(b)$ for all $a,b\in A$, where $d:A\to M$ is a module derivation, leads the theory of derivations to be extensively developed.

The above consideration motivated the authors in [1] to generalize the notion of derivation as follows:

Let A be a Banach algebra and M be a Banach A- module. A linear mapping $\delta: A \to M$ is called module generalized derivation if there exist a module derivation $d: A \to M$ such that $\delta(ab) = \delta(a)b + ad(b)$ $(a, b \in A)$. For convenience, we say that a generalized derivation δ is a d- derivation. In order to construct a module generalized derivation, suppose that $x, y \in M$ and define $\delta_{x,y}: A \to M$ by $\delta_{x,y}(a) := xa - ay$. Then

$$\delta_{x,y}(ab) = xab - aby
= xab - ayb + ayb - aby
= \delta_{x,y}(a)b + ad_y(b).$$

Mathieu [8] called the map of the form $\delta_{x,y}$ an inner generalized derivations. A module generalized derivation $\delta:A\to M$ is called approximately inner (resp. approximately bounded) if there exists a sequence $\{\delta_n\}$ of inner (resp. bounded) generalized derivations from A into M such that $\{\delta_n\}$ converges to δ strongly. We denote by $GZ^1(A,M)$ (resp. $App.GZ^1(A,M)$) and $GN^1(A,M)$ (resp. $App.GN^1(A,M)$) the linear spaces of all (approximately) bounded module generalized derivations and (approximately) inner module generalized derivations from A into M, respectively. Also, we call the quotient space $GH^1(A,M):=GZ^1(A,M)/GN^1(A,M)$ (resp. $App.GH^1(A,M):=App.GZ^1(A,M)/App.GN^1(A,M)$) the (approximate) generalized first cohomology group from A to M.

We recall that the dual space M^* of M is a Banach A- module by regarding the module structure as follows

$$(a.f)(x) = f(xa), (f.a)(x) = f(ax).$$

The Banach algebra A is said to be (approximately) weakly generalized amenable if every generalized derivation $\delta: A \to A^*$ is (approximately) inner; i.e. $GH^1(A, A^*) = \{0\}$ (resp. $App.GH^1(A, A^*) = \{0\}$). The notion of an amenable Banach algebra was introduced by B. E. Johnson in [7]. Bade, Curtis and Dales [2], later defined the concept of weak amenability for commutative Banach algebras. More recently, Ghahramani

and Loy [6] have defined the notion of approximate amenability of Banach algebras. The reader is referred to books [4, 10] for more information on this subject.

Let A_1 , A_2 be unital Banach algebras and X be a unital A_1 - A_2 - module in the sense that $1_{A_1}x1_{A_2}=x$, for every $x \in X$. In this paper, we deal with the module generalized derivations from the triangular Banach algebra of the form $\mathcal{T} := \begin{pmatrix} A_1 & X \\ 0 & A_2 \end{pmatrix}$ into the associated triangular \mathcal{T} - bimodule \mathcal{T}^* of the form $\mathcal{T}^* := \begin{pmatrix} A_1^* & X^* \\ 0 & A_2^* \end{pmatrix}$. Such algebras were introduced by Forrest and Marcoux in [5]. Applying several results concerning the relations between module generalized derivations from A_i into the dual space A_i^* (for i=1,2) and such derivations from \mathcal{T} into \mathcal{T}^* , we show that the so-called generalized first cohomology group

2. Module Derivations on Triangular Banach algebras

from \mathcal{T} to \mathcal{T}^* is isomorphic to the directed sum of the generalized first cohomology group from A_1 to A_1^*

Definition 2.1. $\mathcal{T} := \left\{ \begin{pmatrix} a & x \\ 0 & b \end{pmatrix}; a \in A_1, \ x \in X, \ b \in A_2 \right\}$ equipped with the usual 2×2 matrix addition and formal multiplication with the norm $\| \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \| := \| a \| + \| x \| + \| b \|$ is a Banach algebra which is called the traingular Banach algebra associated to X. We define \mathcal{T}^* as $\left\{ \begin{pmatrix} f & h \\ 0 & g \end{pmatrix}; f \in A_1^*, \ h \in X^*, \ g \in A_2^* \right\}$ and

$$\left(\begin{array}{cc} f & h \\ 0 & g \end{array}\right) \left[\left(\begin{array}{cc} a & x \\ 0 & b \end{array}\right)\right] := f(a) + h(x) + g(b)$$

 \mathcal{T}^* is a triangular \mathcal{T} - bimodule with respect to the following module structure

and the generalized first cohomology group from A_2 to A_2^* .

$$\begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \cdot \begin{pmatrix} f & h \\ 0 & g \end{pmatrix} := \begin{pmatrix} af + xh & bh \\ 0 & bg \end{pmatrix},$$

$$\begin{pmatrix} f & h \\ 0 & g \end{pmatrix} \cdot \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} := \begin{pmatrix} fa & ha \\ 0 & hx + gb \end{pmatrix}.$$

The following results show some interesting relations between module generalized derivations from A_i to A_i^* (for i=1,2) and those from \mathcal{T} to \mathcal{T}^* . Let $d_i:A_i\to A_i^*$ be a bounded module derivation and $\delta_i:A_i\to A_i^*$ be a bounded module d_i - derivation, for i=1,2. Define $\Delta_1,\Delta_2:\mathcal{T}\to\mathcal{T}^*$ by

$$\triangle_1(\left(\begin{array}{cc}a&x\\0&b\end{array}\right)):=\left(\begin{array}{cc}\delta_1(a)&0\\0&0\end{array}\right) \text{ and } \triangle_2(\left(\begin{array}{cc}a&x\\0&b\end{array}\right)):=\left(\begin{array}{cc}0&0\\0&\delta_2(b)\end{array}\right).$$

Theorem 2.2. \triangle_i is a bounded D_i -derivation (for i = 1, 2), where

$$D_1(\left(\begin{array}{cc}a&x\\0&b\end{array}\right)):=\left(\begin{array}{cc}d_1(a)&0\\0&0\end{array}\right)\ and\ D_2(\left(\begin{array}{cc}a&x\\0&b\end{array}\right)):=\left(\begin{array}{cc}0&0\\0&d_2(b)\end{array}\right).$$

Moreover \triangle_i (resp. D_i) is inner if and only if so is δ_i (resp. d_i).

Proof. By simple calculations, it can be observed that D_1 is a derivation and Δ_1 is a D_1 - derivation. Also

$$\| \begin{pmatrix} \delta_1(a) & 0 \\ 0 & 0 \end{pmatrix} \| = \| \delta_1(a) \| \le \| \delta_1 \| \{ \| a \| + \| x \| + \| b \| \}$$

Hence \triangle_1 (and similarly D_1) is bounded.

Suppose that \triangle_1 is inner. Then there exist $\begin{pmatrix} f_1 & h_1 \\ 0 & g_1 \end{pmatrix}$, $\begin{pmatrix} f_2 & h_2 \\ 0 & g_2 \end{pmatrix} \in \mathcal{T}^*$ such that

$$\begin{pmatrix} \delta_{1}(a) & 0 \\ 0 & 0 \end{pmatrix} = \Delta_{1}(\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix})$$

$$= \begin{pmatrix} f_{1} & h_{1} \\ 0 & g_{1} \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} f_{2} & h_{2} \\ 0 & g_{2} \end{pmatrix}$$

$$= \begin{pmatrix} f_{1} & h_{1} \\ 0 & g_{1} \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} f_{2} & h_{2} \\ 0 & g_{2} \end{pmatrix}$$

$$= \begin{pmatrix} f_{1}a & h_{1}a \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} af_{2} & 0 \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} f_{1}a - af_{2} & h_{1}a \\ 0 & 0 \end{pmatrix}.$$

Hence $\delta_1(a) = f_1 a - a f_2$ and $h_1 a = 0$ for all $a \in A_1$. So δ_1 is an inner generalized derivation and $h_1 = 0$. Conversely, if $\delta_1 : A_1 \to A_1^*$ is an inner module generalized derivation, then there exist $f_1, f_2 \in A_1^*$ such that $\delta_1(a) = f_1 a - a f_2$. Then

$$\Delta_{1}\begin{pmatrix} a & x \\ 0 & b \end{pmatrix} = \begin{pmatrix} \delta_{1}(a) & 0 \\ 0 & 0 \end{pmatrix} \\
= \begin{pmatrix} f_{1}a - af_{2} & 0 \\ 0 & 0 \end{pmatrix} \\
= \begin{pmatrix} f_{1} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} - \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \begin{pmatrix} f_{2} & 0 \\ 0 & 0 \end{pmatrix}.$$

Therefore \triangle_1 is an inner generalized derivation.

Theorem 2.3. Let \mathcal{T}^* be the triangular bimodule $\begin{pmatrix} A_1^* & X^* \\ 0 & A_2^* \end{pmatrix}$ associated to the triangular Banach algebra \mathcal{T} . Assume that $D: \mathcal{T} \to \mathcal{T}^*$ be a bounded derivation and $\Delta: \mathcal{T} \to \mathcal{T}^*$ be a bounded D- derivation. Then for i = 1, 2, there exist a continuous derivation $d_i: A_i \to A_i^*$, a continuous d_i - derivation $\delta_i: A_i \to A_i^*$, and $h_0, h_0' \in X^*$ such that

$$\triangle(\left(\begin{array}{cc}a&x\\0&b\end{array}\right))=\left(\begin{array}{cc}\delta_1(a)-xh_0&h_0'a-bh_0\\0&h_0'x+\delta_2(b)\end{array}\right).$$

Proof. First we show that there exist an element $h_0 \in X^*$, a continuous derivation $d_1 : A_1 \to A_1^*$, and a continuous derivation $d_2 : A_2 \to A_2^*$ such that

$$D(\begin{pmatrix} a & x \\ 0 & b \end{pmatrix}) = \begin{pmatrix} d_1(a) - xh_0 & h_0a - bh_0 \\ 0 & h_0x + d_2(b) \end{pmatrix}.$$

For this aim using some ideas of [5], we can verify that

- (i) There exists $h_0 \in X^*$ such that $D\begin{pmatrix} 1_A & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & h_0 \\ 0 & 0 \end{pmatrix}$.
- (ii) There exists a bounded derivation $d_1: A_1 \to A_1^*$ such that $D\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} d_1(a) & h_0 a \\ 0 & 0 \end{pmatrix}$.
- (iii) $D\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -xh_0 & 0 \\ 0 & h_0x \end{pmatrix}$.
- (iv) There exist a bounded derivation $d_2: A_2 \to A_2^*$ such that $D\begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} 0 & -bh_0 \\ 0 & d_2(b) \end{pmatrix}$. Now a similar calculation shows that
 - (i') There exist $f \in A_1^*$, $h_0' \in X^*$ such that $\triangle \begin{pmatrix} 1_{A_1} & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} f & h_0' \\ 0 & 0 \end{pmatrix}$.
 - (ii') There exists a bounded d_1 derivation $\delta_1: A_1 \to A_1^*$ such that $\triangle(\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}) = \begin{pmatrix} \delta_1(a) & h_0'a \\ 0 & 0 \end{pmatrix}$.

(iii')
$$\triangle \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -xh_0 & 0 \\ 0 & h'_0 x \end{pmatrix}.$$

(iv') There exist a bounded d_2 - derivation $\delta_2: A_2 \to A_2^*$ such that $\triangle \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} 0 & -bh_0 \\ 0 & \delta_2(b) \end{pmatrix}$.

$$\text{ and finally } \triangle(\left(\begin{array}{cc}a&x\\0&b\end{array}\right)) = \left(\begin{array}{cc}\delta_1(a)-xh_0&h_0'a-bh_0\\0&h_0'x+\delta_2(b)\end{array}\right).$$

For this aim following the parts (i) and (ii), we only prove the parts (i') and (ii'). The other parts are similar.

(i') There exist $f \in A_1^*$, $h \in X^*$, and $g \in A_2^*$ such that $\triangle \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} f & h \\ 0 & g \end{pmatrix}$. On the other hand

$$\begin{pmatrix} f & h \\ 0 & g \end{pmatrix} = \triangle(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix})$$

$$= \triangle \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix}$$

$$= \triangle(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} D(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix})$$

$$= \begin{pmatrix} f & h \\ 0 & g \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & h_0 \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} f & h \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} f & h \\ 0 & 0 \end{pmatrix}.$$

It follows that g = 0. Taking $h'_0 := h$, completes the proof.

(ii') There exist $f_1 \in A_1^*$, $h_1 \in X^*$, and $g_1 \in A_2^*$ such that $\triangle \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} f_1 & h_1 \\ 0 & g_1 \end{pmatrix}$. On the other hand

$$\begin{pmatrix} f_1 & h_1 \\ 0 & g_1 \end{pmatrix} = \triangle(\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix})$$

$$= \triangle \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix}$$

$$= \triangle(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}) \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} D(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix})$$

$$= \begin{pmatrix} f & h'_0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} d_1(a) & h_0 a \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} fa & h'_0 a \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} d_1(a) & 0 \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} fa + d_1(a) & h'_0 a \\ 0 & 0 \end{pmatrix}.$$

It follows that $g_1 = 0$, $h_1 = h'_0 a$, and $f_1 = f a + d_1(a)$.

Take $\delta_1(a) := f_1$. We show that δ_1 is a d_1 - derivation. Trivially δ_1 is linear. Moreover

$$\begin{pmatrix} \delta_{1}(a_{1}a_{2}) & h'_{0}a_{1}a_{2} \\ 0 & 0 \end{pmatrix} = \Delta(\begin{pmatrix} a_{1}a_{2} & 0 \\ 0 & 0 \end{pmatrix})$$

$$= \Delta \begin{bmatrix} \begin{pmatrix} a_{1} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a_{2} & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix}$$

$$= \begin{pmatrix} \delta_{1}(a_{1}) & h'_{0}a_{1} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a_{2} & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} a_{1} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} d_{1}(a_{2}) & h_{0}a_{2} \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \delta_{1}(a_{1})a_{2} & h'_{0}a_{1}a_{2} \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} a_{1}d_{1}(a_{2}) & 0 \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \delta_{1}(a_{1})a_{2} + a_{1}d_{1}(a_{2}) & h'_{0}a_{1}a_{2} \\ 0 & 0 \end{pmatrix}$$

therefore δ_1 is a d_1 - derivation. Further since \triangle is bounded, so

$$\| \delta_{1}(a) \| \leq \| \delta_{1}(a) \| + \| h'_{0}a \|$$

$$= \| \begin{pmatrix} \delta_{1}(a) & h'_{0}a \\ 0 & 0 \end{pmatrix} \|$$

$$= \| \Delta (\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}) \|$$

$$\leq \| \Delta \| \| a \| .$$

It follows that δ_1 is bounded and $\|\delta_1\| \leq \|\Delta\|$.

Theorem 2.4. Let A_1 , A_2 be unital Banach algebras, X be a unital A_1 - A_2 - module and let \mathcal{T}^* be the triangular bimodule $\begin{pmatrix} A_1^* & X^* \\ 0 & A_2^* \end{pmatrix}$ associated to the triangular Banach algebra \mathcal{T} . Then

$$GH^{1}(\mathcal{T}, \mathcal{T}^{*}) \cong GH^{1}(A_{1}, A_{1}^{*}) \oplus GH^{1}(A_{2}, A_{2}^{*}).$$

Proof. Define $\pi: GZ^1(A_1,A_1^*) \oplus GZ^1(A_2,A_2^*) \to GH^1(\mathcal{T},\mathcal{T}^*)$ by $\pi(\delta_1,\delta_2) := [\triangle_{\delta_2}^{\delta_1}]$, where $\triangle_{\delta_2}^{\delta_1} := \triangle_1 + \triangle_2$ (as we defined in Theorem 2.2) and $[\triangle_{\delta_2}^{\delta_1}]$ represents the equivalent class of $\triangle_{\delta_2}^{\delta_1}$ in $GH^1(\mathcal{T},\mathcal{T}^*)$. Clearly π is linear. We are going to show that π is surjective. For, let \triangle be a bounded

50 M. MOSADEQ

D- derivation from \mathcal{T} to \mathcal{T}^* . Let δ_1, δ_2, h_0 and h'_0 be as in Theorem 2.3. Then trivially

$$(\triangle - \triangle_{\delta_{2}}^{\delta_{1}}) (\begin{pmatrix} a & x \\ 0 & b \end{pmatrix}) = \begin{pmatrix} \delta_{1}(a) - xh_{0} & h'_{0}a - bh_{0} \\ 0 & \delta_{2}(b) + h'_{0}x \end{pmatrix} - \begin{pmatrix} \delta_{1}(a) & 0 \\ 0 & \delta_{2}(b) \end{pmatrix}$$

$$= \begin{pmatrix} -xh_{0} & h'_{0}a - bh_{0} \\ 0 & h'_{0}x \end{pmatrix}$$

$$= \begin{pmatrix} 0 & h'_{0} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} - \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \begin{pmatrix} 0 & h_{0} \\ 0 & 0 \end{pmatrix}$$

hence

$$\triangle - \triangle_{\delta_2}^{\delta_1} \in GN^1(\mathcal{T}, \mathcal{T}^*).$$

This implies that $[\Delta] = [\Delta_{\delta_2}^{\delta_1}]$ and π is surjective. Therefore

$$GH^1(\mathcal{T}, \mathcal{T}^*) \cong GZ^1(A_1, A_1^*) \oplus GZ^1(A_2, A_2^*)/ker\pi.$$

It is enough to show that $ker\pi = GN^1(A_1, A_1^*) \oplus GN^1(A_2, A_2^*)$. For this aim, note that if $(\delta_1, \delta_2) \in ker\pi$, then $\triangle_{\delta_2}^{\delta_1} : \mathcal{T} \to \mathcal{T}^*$ is an inner generalized derivation. So there exist $\begin{pmatrix} f_1 & h_1 \\ 0 & g_1 \end{pmatrix}$, $\begin{pmatrix} f_2 & h_2 \\ 0 & g_2 \end{pmatrix} \in \mathcal{T}^*$ such that

$$\begin{pmatrix}
\delta_{1}(a) & 0 \\
0 & \delta_{2}(b)
\end{pmatrix} = \Delta \frac{\delta_{1}}{\delta_{2}} \begin{pmatrix} a & 0 \\
0 & b \end{pmatrix} \\
= \begin{pmatrix} f_{1} & h_{1} \\
0 & g_{1} \end{pmatrix} \begin{pmatrix} a & 0 \\
0 & b \end{pmatrix} - \begin{pmatrix} a & 0 \\
0 & b \end{pmatrix} \begin{pmatrix} f_{2} & h_{2} \\
0 & g_{2} \end{pmatrix} \\
= \begin{pmatrix} f_{1} & h_{1} \\
0 & g_{1} \end{pmatrix} \begin{pmatrix} a & 0 \\
0 & b \end{pmatrix} - \begin{pmatrix} a & 0 \\
0 & b \end{pmatrix} \begin{pmatrix} f_{2} & h_{2} \\
0 & g_{2} \end{pmatrix} \\
= \begin{pmatrix} f_{1}a & h_{1}a \\
0 & g_{1}b \end{pmatrix} - \begin{pmatrix} af_{2} & bh_{2} \\
0 & bg_{2} \end{pmatrix} \\
= \begin{pmatrix} f_{1}a - af_{2} & h_{1}a - bh_{2} \\
0 & g_{1}b - bg_{2} \end{pmatrix}.$$

Hence $\delta_1(a) = f_1 a - a f_2$ and $\delta_2(b) = g_1 b - b g_2$ for all $a \in A_1$, $b \in A_2$. So δ_1 and δ_2 are the inner d_{f_2} - and d_{g_2} - derivations, respectively. Hence

$$(\delta_1, \delta_2) \in GN^1(A_1, A_1^*) \oplus GN^1(A_2, A_2^*).$$

Conversely, if $(\delta_1, \delta_2) \in GN^1(A_1, A_1^*) \oplus GN^1(A_2, A_2^*)$, then δ_1 and δ_2 are inner. By theorem 2.2, Δ_i is an inner D_i - derivation, for i = 1, 2. Hence $\Delta_1 + \Delta_2 = \Delta_{\delta_2}^{\delta_1}$ is an inner $(D_1 + D_2)$ - derivation. Therefore

$$ker\pi = GN^1(A_1, A_1^*) \oplus GN^1(A_2, A_2^*).$$

Now we have

$$GH^{1}(\mathcal{T}, \mathcal{T}^{*}) = \frac{GZ^{1}(A_{1}, A_{1}^{*}) \oplus GZ^{1}(A_{2}, A_{2}^{*})}{GN^{1}(A_{1}, A_{1}^{*}) \oplus GN^{1}(A_{2}, A_{2}^{*})}$$

$$\cong \frac{GZ^{1}(A_{1}, A_{1}^{*})}{GN^{1}(A_{1}, A_{1}^{*})} \oplus \frac{GZ^{1}(A_{2}, A_{2}^{*})}{GN^{1}(A_{2}, A_{2}^{*})}$$

$$= GH^{1}(A_{1}, A_{1}^{*}) \oplus GH^{1}(A_{2}, A_{2}^{*}).$$

Remark 2.5. Let $d_i: A_i \to A_i^*$ be an approximately bounded derivation and $\delta_i: A_i \to A_i^*$ be an approximately bounded d_i - derivation, for i = 1, 2. Define $\Delta_1, \Delta_2: \mathcal{T} \to \mathcal{T}^*$ by

$$\triangle_1 \left(\begin{array}{cc} a & x \\ 0 & b \end{array} \right) := \left(\begin{array}{cc} \delta_1(a) & 0 \\ 0 & 0 \end{array} \right) \quad and \quad \triangle_2 \left(\begin{array}{cc} a & x \\ 0 & b \end{array} \right) := \left(\begin{array}{cc} 0 & 0 \\ 0 & \delta_2(b) \end{array} \right).$$

(i) Following exactly the method has been used in Theorem 2.2, shows that \triangle_i is an approximately bounded D_i - derivation (for i = 1, 2), where

$$D_1\begin{pmatrix} a & x \\ 0 & b \end{pmatrix} := \begin{pmatrix} d_1(a) & 0 \\ 0 & 0 \end{pmatrix} \text{ and } D_2\begin{pmatrix} a & x \\ 0 & b \end{pmatrix} := \begin{pmatrix} 0 & 0 \\ 0 & d_2(b) \end{pmatrix}.$$
Moreover, \triangle_i (rep. D_i) is approximately inner if and only if so is δ_i (resp. d_i).

(ii) Assume that $D: \mathcal{T} \to \mathcal{T}^*$ be an approximately bounded derivation and $\Delta: \mathcal{T} \to \mathcal{T}^*$ be an approximately bounded D_i derivation. Then similar to the proof of Theorem 2.3, it can be shown that for i=1,2 there exist an approximately bounded derivation $d_i: A_i \to A_i^*$, an approximately bounded d_i - derivation $\delta_i: A_i \to A_i^*$, and $h_0, h'_0 \in X^*$ such that

$$\triangle(\left(\begin{array}{cc}a&x\\0&b\end{array}\right))=\left(\begin{array}{cc}\delta_1(a)-xh_0&h_0'a-bh_0\\0&h_0'x+\delta_2(b)\end{array}\right).$$

(iii) As an immediate consequence of the part (i) and (ii), it is easily seen that

$$App.GH^{1}(\mathcal{T},\mathcal{T}^{*}) \cong App.GH^{1}(A_{1},A_{1}^{*}) \oplus App.GH^{1}(A_{2},A_{2}^{*}).$$

Corollary 2.6. \mathcal{T} is (approximately) weakly generalized amenable if and only if A_i is (approximately) weakly generalized amenable, for i = 1, 2.

52 M. MOSADEQ

3. Acknowledgment

The author would like to thank the referee for his/her useful comments. This work is partially supported by Grant-in-Aid from the Behbahan Branch, Islamic Azad University, Behbahan, Islamic Republic of Iran.

References

- [1] Gh. Abbaspour, M.S. Moslehian and A. Niknam, Generalized Derivations on modules, Bull. Iranian Math. Soc., Vol.32,(2006), no. 1, 21-30.
- [2] W.G. Bade, P.G. Curtis and H.G. Dales, Amenability and weak amenability for Burling and lipschits algebras, Proc. London Math. Soc., Vol.3,(1987), no. 55, 359-377.
- [3] M. Bresar, On the distance of the compositions of two derivations to the generalized derivations, Glasgow Math. J., Vol.33,(1991), no. 1, 89-93.
- [4] G. Dales, P. Aiena, J. Eschmeier, K. Laursen and G. Willis, *Introduction to Banach algebras, Operators and Harmonic Analysis*, Cambridge. Univ. Press, 2003.
- [5] B.E. Forrest and L.W. Marcoux, Derivations on triangular Banach algebras, Indiana Univ. Math. J., Vol.45,(1996), 441-462.
- [6] F. Ghahramani and R.J. Loy, Generalized notions of amenability, J. Func. Anal., Vol.208, (2002), 229-260.
- [7] B.E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127.1972.
- [8] M. Mathieu, *Elementary operators and applications*, Proceeding of the international workshop, World Scientific, Singapore 1992.
- [9] M. Mosadeq, M. Hassani and A. Niknam, (σ, γ) generalized dynamics on modules, J. Dyn. Syst. Geom. Theor, vol. 9., (2011), no. 2, 171-184.
- [10] V. Runde, Lectures on amenability, Lecture notes in Mathematics 1774, Springer, 2002.