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Abstract. Let G be a finite simple graph whose vertices and edges are weighted by two functions. In this

paper we shall define and calculate entropy of a dynamical system on weights of the graph G, by using the

weights of vertices and edges of G. We examine the conditions under which entropy of the dynamical system

is zero, possitive or +∞. At the end it is shown that, for r ∈ [0,+∞], there exists an order preserving

transformation with entropy r.
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1. Introduction

The study of concept entropy is very important in the current sciences. Entropy plays an important

role in a variety of problem areas, including physics, computer science, general systems theory, information

theory, statistics, biology, chemistry, sociology and others. One of the applied branches of mathematics is

the entropy of a dynamical system. Shannon in 1940 was concerned with the problems of the transmission of

information in the presence of noise. Shannon introduced entropy as a measure of information in a probability
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distribution. If P = (p1, ..., pn) ∈ Rn is a probability distribution, he defined its entropy to be the quantity

H(P ) = −
n∑
i=1

pi log pi.

In 1958 Kolmogorov introduced the concept of entropy in ergodic theory. Let G be a finite simple graph,

V be the set of vertices and E the set of edges of G. We consider two functions M : V −→ [0, 1] and

S : E −→ [0, 1]. (M,S) is called a weight of G. In this paper we define the entropy of a weight of G. We

assume the reader is familiar with the defininition of discrete dynamical system [6].

The definition of the entropy of a dynamical system T might be in three stages [1-5]. For example if T is a

measure preserving transformation of probability space (X,β,m):

i) The entropy of a finite partition, ξ, of (X,β.m) is defined in [7] as,

H(ξ) = −
n∑
i=1

m(Ai)logm(Ai),

where ξ = {A1, ...An} ⊂ β.

ii) The entropy of T relative to ξ is defined by,

h(T, ξ) = lim
n→∞

1

n
H(∨n−1i=0 T

−iξ).

iii) The entropy of T is defined by,

h(T ) = sup
ξ
h(T, ξ),

where the supremum is taken over all finite partitions of (X,β,m). In this paper the definition of entropy

of an order preserving transformation as a dynamical system including the three stages is given. The paper

is organized as follows. In Section 2 weights of a finite simple graph G are introduced as two functions on

vertices and edges of G. Also entropy of the weights and entropy of an order preserving transformatin on

the weights of G is introduced. Finally, some results of the entropy are considered. In Section 3 we examine

the conditions under which entropy of the order preserving transformatin is zero, possitive or +∞, and we

present some examples for each of these cases. At the end we show that, for r ∈ [0,+∞] there exists an

order preserving transformation with entropy r.

2. The entropy of weights

Let G be a finite simple graph, V be the set of vertices and E the set of edges of G. We define FV := [0, 1]V ,

FE := [0, 1]E and F := FV × FE . At first let us define join of two weights and refinement of a weight.

Definition 2.1. If (M1, S1) and (M2, S2) are two weights of G, we define their join (M1, S1) ∨ (M2, S2) to

be the (min(M1,M2),min(S1, S2)).
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Definition 2.2. A weghit (M2, S2) is a refinement of a weight (M1, S1), written by (M1, S1) ≺ (M2, S2), if

for any vi ∈ V , there is vt ∈ V , such that

M2(vi) ≤M1(vt),

and,

for any ej ∈ E, there is el ∈ E, such that

s2(ej) ≤ s1(el).

Hence for i=1,2, (Mi, Si) ≺ (M1, S1) ∨ (M2, S2), for any weight (M1, S1) , (M2, S2) of G. Now we would

like to define the entropy of a weight of G. In this definition the entropy of the weight of G increases as the

weight decreases.

Definition 2.3. Let (M,S) be a weight of G. We define the entropy of M by H(M) = − log maxiM(vi)

and the entropy of S by H(S) = − log maxj S(ej). The entropy of (M,S) is defined by

H(M,S) = − log max
i
M(vi).max

j
S(ej) = H(M) +H(S).

Theorem 2.4. If (M,S) is a weight of G,Then

(i) H(M,S) ≥ 0.

(ii) H(M,S) = 0, iff there exist i0, j0 such that Mvi0
= Sej0 = 1.

(iii) H(Mk, St) = kH(M) + tH(S) for any k, t ∈ N.

Proof. It can be deduced from definition 2.3. �

Theorem 2.5. If (M1, S1) and (M2, S2) are two weights of G. Then

(i) If (M1, S1) ≺ (M2, S2), then H(M1, S1) ≤ H(M2, S2).

(ii) For i=1,2, H(Mi, Si) ≤ H(M1, S1) ∨ (M2, S2)) ≤ H(M1, S1) +H(M2, S2).

Proof. (i) By using the definition 2.2, we have

max
i
M2(vi) ≤ max

i
M1(vi),

max
j
S2(ej) ≤ max

j
S1(ej).

(ii) By (i), we have the first inquality.

Since for i=1,2, 0 < Mi ≤ 1 , 0 < Si ≤ 1, we have

max
i

(min(M1,M2)(vi) ≥ max
i

(M1M2)(vi),

max
j

(min(S1, S2)(ej)) ≥ max
j

(S1S2)(ej).

�
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Definition 2.6. Let (M1, S1) and (M2, S2) be two weights of G. We define the conditional entropy of

(M1, S1) given (M2, S2) by

H((M1, S1)|(M2, S2)) = − log
maxi(min(M1,M2))(vi).maxj(min(S1, S2))(ej)

maxiM2(vi).maxj S2(ej)
.

Theorem 2.7. If (M1, S1), (M2, S2) and (M3, S3) are weights of G. Then

(i) H((M1, S1)|(M2, S2)) ≥ 0.

(ii) H(((M1, S1) ∨ (M2, S2)|(M3, S3)) = H((M1, S1)|(M3, S3)) +H((M2, S2)|((M1, S1) ∨ (M2, S2)).

(iii) H((M1, S1) ∨ (M2, S2)) = H(M1, S1) +H((M2, S2)|(M1, S1)).

(iv) If (M1, S1) ≺ (M2, S2), then H((M1, S1)|(M3, S3)) ≤ H((M2, S2)|(M3, S3)).

(v) If (M2, S2) ≺ (M3, S3), then H((M1, S1)|(M3, S3)) ≤ H((M1, S1)|(M2, S2)).

(vi) If (M2, S2) ≺ (M3, S3), then H((M1, S1)|(M2, S2)) ≤ H((M1, S1) ∨ (M3, S3)).

(vii) H(M1, S1) ≥ H((M1, S1)|(M2, S2)).

(viii) H((M1, S1) ∨ (M2, S2)|(M3, S3)) ≤ H((M1, S1)|(M3, S3)) +H((M2, S2)|(M3, S3)).

Proof. (i) By the definition 2.6, H((M1, S1)|(M2, S2)) ≥ 0.

(ii)

maxi(min(M1,M2,M3))(vi).maxj(min(S1, S2, S3))(ej)

maxiM3(vi).maxj S3(ej)
=

maxi(min(M1,M3))(vi).maxj(min(S1, S3))(ej)

maxiM3(vi).maxj S3(ej)
×

maxi(min(M2,M1,M3))(vi).maxj(min(S2, S1, S3))(ej)

maxi(min(M1,M3))(vi).maxj(min(S1, S3))(ej)
.

(iii)

max
i

(min(M1,M2))(vi).max
j

(min(S1, S2))(ej)

= max
i
M1(vi).max

j
S1(ej).

maxi(min(M2,M1))(vi).maxj(min(S2, S1))(ej)

maxiM1(vi).maxj S1(ej)
.

(iv) Since (M2, S2) ≺ (M3, S3), for any vi ∈ V , ej ∈ E there exist vt ∈ V , el ∈ E such that

M1(vi) ≤M2(vt) ≤ max
i
M2(vi),

S1(ej) ≤ S2(el) ≤ max
j
S2(ej),

then

maxi(min(M1,M3))(vi).maxj(min(S1, S3))(ej)

maxiM1(vi).maxj S1(ej)
≥ maxj(min(M2,M3))(vi).maxj(min(S1, S2))(ej)

maxiM2(vi).maxj S2(ej)
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(v) It is similar to (iv).

(vi) Since (M2, S2) ≺ (M3, S3), for any vi ∈ V , ej ∈ E there exist vt ∈ V , el ∈ E, such that

M2(vi) ≤M3(vt) ≤ max
i
M3(vi),

S2(ej) ≤ S3(el) ≤ maxS3(ej),

therefore

maxi(min(M1,M2))(vi).maxj(min(S1, S2))(ej)

maxiM2(vi).maxj S2(ej)
≥ max

i
(min(M1,M3))(vi).max

j
(min(S1, S3))(ej).

(vii) Since for i=1,2, 0 < Mi ≤ 1 , 0 < Si ≤ 1, we can write

max
i
M1(vi).max

i
M2(vi).max

j
S1(ej).max

j
S2(ej) ≤ max

i
(min(M1,M2))(vi).max

j
(min(S1, S2))(ej).

So

max
i
M1(vi).max

j
S1(ej) ≤

maxi(min(M1,M2))(vi).maxj(min(S1, S2))(ej)

maxiM2(vi).maxj S2(ej)
.

(viii) We have (M3, S3) ≺ (M1, S1) ∨ (M3, S3). The proof is compleet by (ii) and (v). �

Definition 2.8. Let (M1, S1) and (M2, S2) be two weights of G. We define relation ∼ as follows:

(M1, S1) ∼ (M2, S2)⇐⇒ max
i
M1(vi).max

j
S1(ej) = max

j
M2(vi).max

j
S2(ej).

The relation ∼ is an equivalence relation on F .

Definition 2.9. Let T : F → F be a dynamical system. T is said to be an order preserving transformation

if:

Mi(vk) ≤Mj(vl) =⇒ Ḿi(vk) ≤ Ḿj(vl),

Si(ek) ≤ Sj(el) =⇒ Śi(ek) ≤ Śj(el)

where T (Mi, Si) = (Ḿi, Śi), i, j ∈ {1, 2}, k, l ∈ {1, 2, ..., n}.

Lemma 2.10. Let T : F → F be an order preserving transformation, then

T (M1, S1) ∨ T (M2, S2) = T ((M1, S1) ∨ (M2, S2)).

Proof. We may assume that for any v ∈ V , e ∈ E,

M1(v) ≤M2(v), S2(e) ≤ S1(e).
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Let T (Mi, Si) = (Ḿi, Śi), i = 1, 2, we have

T ((M1, S1) ∨ (M2, S2))(v, e) = T (min(M1,M2),min(S1, S2))(v, e)

= T (M1, S2)(v, e)

= (Ḿ1, Ś2)(v, e).

On the other hand since T is an order preserving transformation,

(T (M1, S1) ∨ T (M2, S2))(v, e) = ((Ḿ1, Ś1) ∨ (Ḿ2, Ś2))(v, e)

= (Ḿ1(v), Ś2(e)).

�

Theorem 2.11. If T : F → F is an order preserving transformation and (M,S) is a weight of G and

T (M,S) ∼ (M,S), then limn→∞
1
nH(∨n−1i=0 T

i(M,S)) exists.

Proof. Let an = H(∨n−1i=0 T
i(M,S)). We show that for p ∈ N, an+p ≤ an + ap and then by theorem 4.9 in

[7] limn→∞
1
nan exists and equals infn

an
n . Since for any i ∈ N T i(M,S) ∼ (M,S), by lemma 2.10, we have

an+p = H(∨n+p−1i=0 T i(M,S))

≤ H(∨n−1i=0 T
i(M,S)) +H(∨n+p−1i=n T i(M,S))

= an +H(∨p−1i=0 T
n+i(M,S))

= an +H(Tn(∨p−1i=0 T
i(M,S))

= an +H(∨p−1i=0 T
i(M,S))

= an + ap.

�

Definition 2.12. Let (M,S) be a weight of G and T : F → F be an order preserving transformation and

T (M,S) ∼ (M,S). The entropy of T relative to (M,S) is defined by

h(T, (M,S)) = lim
n→∞

1

n
H(∨n−1i=0 T

i(M,S)).

Definition 2.13. Let T : F → F be an order preserving transformation. Entropy of T is defined by

h(T ) = sup
(M,S)

h(T, (M,S)),

where (M,S) ranges over all weights of G.
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Theorem 2.14. Let T : F → F be an order preserving transformation, then

(i) h(T, (M,S)) ≤ H(M,S).

(ii) If (M1, S1) ≺ (M2, S2), then h(T, (M1, S1)) ≤ h(T, (M2, S2)).

(iii) h(T, (M1, S1) ∨ (M2, S2)) ≤ h(T, (M1, S1)) + h(T, (M2, S2)).

(iv) h(T, (M1, S1)) ≤ h(T, (M2, S2)) +H((M1, S1)|(M2, S2)).

(v) h(T, T−1(M,S)) = h(T, (M,S)).

(vi) If k ≥ 1, h(T,∨ki=0T
i(M,S)) = h(T, (M,S)).

(vii) If T is invertible and k ≥ 1, then h(T,∨ki=−kT i(M,S)) = h(T, (M,S)).

(viii) For k ≥ 1, h(T k) = kh(T ).

(ix) If T is invertible, then h(T k) = |k|h(T ), ∀k ∈ Z.

Proof. It is similar to the proof of theorems 4.12 and 4.13 in [7]. �

Corollary 2.15. If T : F → F is an order preserving transformation with T k = id for some k ∈ N, then

h(T ) = 0.

Proof. h(T k)=0, Since T k = id. So by theorem 2.14 (ix), we have h(T ) = 1
kh(T k) = 0. �

3. Main Resultes

In this section we would like to calculate entropy of an order preserving transformation on weights of the

graph G. We examine the conditions under which entropy of the dynamical system is zero, possitive or +∞
and we give some examples about these cases. Finally we show that for r ∈ [0,+∞], there exists an order

preserving transformation with entropy r.

Theorem 3.1. If T : F → F is an order preserving transformation with T ≥ id, then for any n ∈ N,

h(Tn)=h(T )=0.

Proof. Since T is order preserving transformation and T ≥ I, we have TV ≥ IFV
,TE ≥ IFE

and for any

n ∈ N, weight (M,S),

M ≤ TVM ≤ . . . ≤ TV n−1M,

S ≤ TES ≤ . . . ≤ TEn−1S.

So

∨n−1i=0 T
i(M,S)) = ∨n−1i=0 (TV

iM,TE
iS) = (M,S).

Hence

h(T, (M,S)) = lim
n→∞

1

n
H(M,S) = 0.

Therefore h(T )=0. Now by corollary 2.15, h(Tn) = nh(T ), for any n ∈ N. So h(Tn) = 0 for any n ∈ N. �



60 A. EBRAHIMZADEH AND M. EBRAHIMI

Example 3.2. Let T : F → F be defined by T (M,S) = (
√
M, 3
√
S). Then h(T ) = 0 because T is an order

preserving transformation and T ≥ I.

Corollary 3.3. If T : F → F is an order preserving transformation and (M0, S0) is a fixed point for T .

Then there exists a proper subset A of F , such that h(T ) = h(T |A).

Proof. Let B = {(M,S) ∈ F ;T (M,S) ≥ (M,S)}. Define A = F − B. Since T (M0, S0) = (M0, S0),

B 6= φ, therefore A & F . Since T |B ≥ I and T is an order preserving transformation, then by theorem 3.1,

h(T |B) = 0. So we have

h(T ) = h(T |A∪B)

≤ h(T |A) + h(T |B)

= h(T |A)

On the other hand h(T |A) ≤ h(T ). Therefore h(T ) = h(T |A). �

Theorem 3.4. If T : F → F is defined by T (M,S) = (PM,QS) where P ∈ FV , Q ∈ FE. Then h(T ) =

H(P,Q).

Proof. We have TVM = PM , TES = QS. So for i ∈ N, TV
iM = P iM , TE

iS = QiS. Since 0 < P ≤ 1 ,

0 < Q ≤ 1, then for n ∈ N we have

M ≥ TVM ≥ . . . ≥ TV n−1M,

S ≤ TES ≤ . . . ≤ TEn−1S,

so

∨n−1i=0 T
i(M,S)) = ∨n−1i=0 (TV

iM,TE
iS) = (TV

n−1M,TE
n−1S).
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Hence

h(T, (M,S)) = lim
n→∞

1

n
H(TV

n−1M,TE
n−1S)

= lim
n→∞

1

n
H(Pn−1M,Qn−1S)

= lim
n→∞

− 1

n
log max

i
(Pn−1M)(vi).max

j
(Qn−1S)(ej)

= lim
n→∞

− 1

n
log max

i
(Pn−1)(vi).max

j
(Qn−1)(ej)

= lim
n→∞

−n− 1

n
log max

i
P (vi).max

j
Q(ej)

= − log max
i
P (vi).max

j
Q(ej)

= H(P,Q).

�

Corollary 3.5. Let T : F → F be an order preserving transformation with T (M,S) = (PM,QS) where

P ∈ FV , Q ∈ FE, P < 1, Q < 1. Then h(T ) > 0.

Example 3.6. Let T : F → F is defined by T (M,S) = (aM, bS) where a, b ∈ (0, 1], then by theorem 3.4,

h(T ) = log 1
ab .

Example 3.7. Let Ti : F → F , i = 1, 2, be defined by

T1(M,S) = (
2

3
M,

3

4
S),

T2(M,S) = (
2

5
M,

5

6
S),

then by example 3.6, we have h(T1) = log 2, h(T2) = log 3.

Theorem 3.8. If T : F → F is an order preserving transformation and T ≤ I, then

h(T, (M,S)) = lim
n→∞

1

n
H(Tn(M,S)).

Proof. Since T is an an order preserving transformation and T ≤ I, we have

∨ni=0T
i(M,S) = Tn(M,S).

Therefore

h(T, (M,S)) = lim
n→∞

1

n
H(∨ni=0T

i(M,S)) = lim
n→∞

1

n
H(Tn(M,S)).

�
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Theorem 3.9. If T : F → F is an order preserving transformation with TVM = Mk or TES = Sk for

k ∈ (1,+∞), then h(T ) = +∞.

Proof. Case (a). Let TVM = Mk. Since TV
iM = Mki , 0 < M ≤ 1, then for n ∈ N

min(M,TVM, . . . , TV
n−1M) = Mkn−1

.

So

∨n−1i=0 (TV
iM,TE

iS) = (Mkn−1

,min(S, TES, . . . , TE
n−1S)).

Therefore

h(T, (M,S)) = lim
n→∞

1

n
H(∨n−1i=0 (TV

iM,TE
iS))

= lim
n→∞

− 1

n
log max

i
(Mkn−1

)(vi).max
j

min(S, TES, . . . , TE
n−1S)

≥ lim
n→∞

−k
n−1

n
log max(M)(vi)

= +∞.

Therefore h(T ) = +∞.

Case (b). Let TES = Sk. It is similar to case (a) to see that h(T ) = +∞. �

Example 3.10. Let Ti : F → F , i = 1, 2, 3, 4 be defined by

T1(M,S) = (M2,
3

5
S),

T2(M,S) = (
1

4
M,S

3
2 ),

T3(M,S) = (M3,
√
S),

T4(M,S) = (M
5
4 , S4).

Then for i = 1, 2, 3, 4, h(Ti) = +∞, because 2, 32 , 3,
5
4 ∈ (1,+∞).

The next corollary implies that, for r ∈ [0,+∞] there exists an order preserving transformation with

entropy r.

Corollary 3.11. Let U denote the set of order preserving transformations. Then the function E : U →
[0,+∞] which is defined by E(T ) = h(T ), is surjective.

Proof. If E(T ) = 0, by corollary 2.15 it is sufficient to put T = I. Let E(T ) = h(T ) < +∞. Since log is

surjective, example 3.6 implies that the function E is surjective. If E(T ) = h(T ) = +∞, then example 3.10

implies that there exists an order preserving transformation with entropy +∞. �
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4. Conclusion

This paper has introduced and calculated entropy of an order preserving transformation on weights of a

finite simple graph G by using the changes of the weights of vertices and edges of G. We presented some

conditions as to when the entropy of dynamical system T is zero, possitive or +∞. Also we presented some

examples for the cases of zero, possitive and +∞, and we have shown for r ∈ [0,+∞] there exists an order

preserving transformation with entropy r.

For future research we present some questions:

• If h(T1) = h(T2), then what is the relation between T1 and T2 ?

• Is there an order preserving transformation T such that T < I and h(T ) = 0 ?
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