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Abstract. In this paper, modification of the optimal homotopy asymptotic method (MOHAM) is applied

upon singular initial value Lane-Emden type equations and results are compared with the available exact

solutions. The modified algorithm give the exact solution for differential equations by using one iteration

only.
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1. Introduction

Mathematical modeling of many physical systems and engineering are generally described by differential

equations. These equations are often solved by many methods such as, Adomian’s decomposition method

(ADM) [1–4],Variational iteration method (VIM) [5–8], Homotopy analysis method (HAM) [9–11], and

Homotopy perturbation method (HPM) [12–15]. One of these methods is optimal homotopy asymptotic

method that was first proposed by Marinca et al. [16–23].The present work is motivated to extend the

application of MOHAM on the Lane-Emden type equations, that first, this equations were published by

Jonathan Homer Lane in 1870 [24], and further explored in detail by Emden [25].

JOURNAL OF MAHANI MATHEMATICAL RESEARCH CENTER

VOL. 2, NUMBER 1 (2013) 65-82.

c©MAHANI MATHEMATICAL RESEARCH CENTER

65



66 BAHMAN GHAZANFARI, NAHID YARI

The Lane-Emden equations have the following form

(1.1) u′′ +
m

x
u′ + f(u) = g(x), 0 < x < 1, m ≥ 1

subject to following initial conditions

(1.2) u(0) = α, u′(0) = β,

where α, β and m are constants and f(u) is a real valued continuous function.

This modifications demonstrates a rapid convergence of the series solution if compared with standard

OHAM. In addition, the modified algorithm give the exact solution for differential equations by using one

iteration only. These results reveal that the MOHAM is very effective, simple and has closed agreement with

exact solution.

The rest of the paper is organized as follows. In section 2 we applied the methods of OHAM and MOHAM.

The numerical experiments are provided in section 3 and conclusion is in section 4.

2. The methods

2.1 OHAM

Consider the following equation

(2.1) L(u(x)) + g(x) +N(u(x)) = 0, B(u,
du

dx
) = 0

where L is a linear operator, x denotes independent variable, u(x) is an unknown function, g(x) is a known

function, N is a nonlinear operator and B is a boundary operator.

According to OHAM we construct a homotopy:

h(v(x, p), p) : R× [0, 1]→ R which satisfies

(2.2)

(1− p)[L(v(x, p)) + g(x)] = H(p)[L(v(x, p)) + g(x) +N(v(x, p))],

B(v(x, p),
∂v(x, p)

∂x
) = 0,

where x ∈ R and p ∈ [0, 1] is an embedding parameter, H(p) is a nonzero auxiliary function for p 6= 0,

H(0) = 0 and v(x, p) is an unknown function. Obviously, when p = 0 and p = 1 it holds that v(x, 0) = u0(x)

and v(x, 1) = u(x) respectively. Thus, as p varies from p = 0 to p = 1 the solution v(x, p) approaches from

u0(x) to u(x), where u0(x) is obtained from Eq.(2.2) for p = 0 and we have

(2.3) L(u0(x)) + g(x) = 0, B(u0,
du0
dx

) = 0.
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Next, we choose auxiliary function H(p) in the form

(2.4) H(p) = pc1 + p2c2 + · · ·

where c1, c2, · · · are constants to be determined. H(p) can be expressed in many forms as reported by V.

Marinca et al. [16]-[18].

To get an approximate solution, we expand v(x, p, ci) in Taylor’s series about p in the following manner

(2.5) v(x, p, ci) = u0(x) +

∞∑
k=1

uk(x, c1, c2, · · · , ck)pk.

Substituting Eq.(2.5) into Eq.(2.2) and equating the coefficient of the same power of p, we obtain the following

linear equations. The zeroth and the first order are given by Eq.(2.3) and Eq.(2.6) respectively,

(2.6) L(u1(x)) + g(x) = c1N0(u0(x)), B(u1,
du1
dx

) = 0.

The general governing equations for uk(x) are given by

(2.7)

L(uk(x))− L(uk−1(x)) = ckN0(u0(x)) +

k−1∑
i=1

ci[L(uk−i(x)) +Nk−i(u0(x), u1(x),

· · · , uk−1(x))], k = 2, 3, · · · ,

B(uk,
duk
dx

) = 0,

where Nm(u0(x), u1(x), · · · , um(x)) is the coefficient of pm in the expansion of N(v(x, p)) about the embed-

ding parameter p.

(2.8) N(v(x, p, ci)) = N0(u0(x)) +

∞∑
m=1

Nm(u0, u1, u2, · · · , um)pm.

It has been observed that the convergence of the series (2.5) depends upon the auxiliary constants c1, c2, · · · .
If it is convergent at p = 1, one has

(2.9) v(x, ci) = u0 +

∞∑
k=1

uk(x, c1, c2, · · · , ck).

The result of the mth order approximations are given by

(2.10) ũ(x, c1, c2, · · · , cm) = u0(x) +

m∑
i=1

ui(x, c1, c2, · · · , ci).

Substituting Eq.(2.10) into Eq.(2.1), it results the following residual

(2.11) R(x, c1, c2, · · · , cm) = L(ũ(x, c1, c2, · · · , cm)) + g(x) +N(ũ(x, c1, c2, · · · , cm)).
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If R = 0, then ũ will be the exact solution. Generally it does not happen, especially in nonlinear problems.

In order to find the optimal values of ci, i = 1, 2, 3, · · · , we first construct the functional

(2.12) J(c1, c2, · · · , cm) =

∫ b

a

R2(x, c1, c2, · · · , cm)dx

and then minimizing it, we have

(2.13)
∂J

∂c1
=
∂J

∂c2
= · · · = ∂J

∂cm
= 0,

where a and b are in the domain of the problem. With these constants known, the approximate solution (of

the order m) is well determined.

2.2 MOHAM

The modified form of the OHAM can be established based on the assumption that function g(x) can be

divided into two parts namely g1(x) and g2(x) [23],

(2.14) g(x) = g1(x) + g2(x).

And to this assumption the Eq.(2.2) becomes

(2.15)

(1− p)[L(v(x, p) + g1(x)] =H(p)[L(v(x, p)) + g1(x) + g2(x) +N(v(x, p))],

B(v(x, p),
∂v(x, p)

∂x
) = 0

For to communicate the reliability of MOHAM, we deal with different examples.

3. Examples

In this section, we solve some examples by OHAM and MOHAM.

Example 1. Consider the linear Lane-Emden equation [26]

(3.1)
u′′ +

2

x
u′ + u− x5 − 30x3 = 0, 0 < x ≤ 1

u(0) = 0, u′(0) = 0.

The exact solution is u(x) = x5.

a) OHAM
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(3.2) (1− p)[u′′ + 2

x
u′ + u− x5 − 30x3] = H(p)[u′′ +

2

x
u′ + u− x5 − 30x3]

The zeroth order problem is

(3.3)
u′′0 +

2

x
u′0 − x5 − 30x3 = 0

u0(0) = 0, u′0(0) = 0

(3.4) u0(x) =
x7

56
+ x5.

The first order problem is

(3.5)
u′′1 +

2

x
u′1 = (1 + c1)u′′0 + (1 + c1)

2

x
u′0 + c1u0 − c1x5 − 30c1x

3 − x5 − 30x3,

u1(0) = 0, u′1(0) = 0

(3.6) u1(x) =
c1x

9

5050
+
c1x

7

56
.

The second order problem is

(3.7)
u′′2 +

2

x
u′2 =(1 + c1)u′′1 + (1 + c1)

2

x
u′1 + c1u1 + c2u

′′
0 + c2

2

x
u′0 + c2u0

− c2u0 − c2x5 − 30c2x
3,

u2(0) = 0, u′2(0) = 0.

(3.8) u2(x) =
c21x

11

665280
+
c21x

9

2520
+
c21x

7

56
+
c1x

9

5040
+
c1x

7

56
+
c2x

9

5040
+
c2x

7

56
.

Now, u(x) can be obtained by adding zeroth-order, first-order and second-order solutions, and other higher

order solutions if necessary as:

(3.9) u(x) = u0(x) + u1(x) + u2(x) + · · ·

By using the procedure mentioned in section 2, we can calculate the constant c1 and c2, as follows:

c1 = −0.9915643704541924 and c2 = 0.00003780900325537855.

By using these values of c1 and c2, the approximate solution becomes

u(x) ≈ x5 + 1.9458723051687943× 10−6x7 − 3.3117322215657837× 10−6x9

+1.477873828695014× 10−6x11.

The errors of OHAM are shown in Table 1 and Figure 1.

b) MOHAM
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For the modification OHAM, we construct homotopy in the following form

(3.10)
(1− p)[u′′ + 2

x
u′ − 30x3] = H(p)[u′′ +

2

x
u′ + u− x5 − 30x3],

u(0) = 0, u′(0) = 0.

We find

u0(x) = x5,

u1(x) = 0,

u2(x) = 0, . . .

Then

(3.11) u1 = u2 = u3 = · · · = 0.

Consequently, the exact solution u(x) = x5 follows immediately.
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Figure 1. The Error between Exact solution and OHAM of order 2.

Example 2. Consider the linear Lane-Emden equation [26]

(3.12)
u′′ +

8

x
u′ + xu− x5 + x4 − 44x2 + 30x = 0, 0 < x ≤ 1,

u(0) = 0, u′(0) = 0.
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Table 1. The exact and OHAM of order 2 solutions

x Exact solution OHAM solution Error

0.0 0.0000000 0.0000000 0.000000e+0

0.1 0.0000100 0.0000100 1.912903e-13

0.2 0.0003200 0.0003200 2.324183e-11

0.3 0.0024300 0.0024300 3.629955e-10

0.4 0.0102400 0.0102400 2.381953e-9

0.5 0.0312500 0.0312500 9.455518e-9

0.6 0.0777600 0.0777600 2.645902e-8

0.7 0.1680700 0.1680701 5.583301e-8

0.8 0.3276800 0.3276801 9.053422e-8

0.9 0.5904900 0.5904901 1.114442e-7

1.0 1.0000000 1.0000001 1.120139e-7

The exact solution is

u(x) = x4 − x3.

a) OHAM

Using OHAM, the homotopy formula for above equation is

(3.13)
(1− p)[u′′ + 8

x
u′ − x5 + x4 − 44x2 + 30x] =

H(p)[u′′ +
8

x
u′ + xu− x5 + x4 − 44x2 + 30x].

Applying OHAM, we find

u0(x) =
x7

98
− x6

78
+ x4 − x3,

u1(x) =
c1x

10

16660
− c1x

9

11232
+
c1x

7

98
− c1x

6

78
,

u2(x) =
c21x

13

4331600
− c21x

12

2560896
+
c21x

10

8330
− c21x

9

5616
+
c21x

7

98
− c21x

6

78
+
c1x

10

16660

− c1x
9

11232
+
c1x

7

98
− c1x

6

78
+
c2x

10

16660
− c2x

9

11232
+
c2x

7

98
− c2x

6

78
.
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Now, u(x) can be obtained by adding the zeroth-order, the first-order and the second-order solutions, and

other higher order solution if necessary as:

(3.14) u(x) = u0(x) + u1(x) + u2(x) + · · · .

By using the procedure mentioned in section 2, we calculate the constants c1 and c2, that

c1 = −0.9951916227117169, c2 = 0.00002639270897467315

and using this values of c1, c2, the approximate solution becomes:

u(x) ≈ 2.286467739208561× 10−7x13 − 3.8674212694134408× 10−7x12

−5.7287640355933747× 10−7x10 + 8.4972586211703724× 10−7x9

+5.0523674613498198× 10−7x7 − 6.347846297583312× 10−7x6

+x4 − x3.

The errors of OHAM are shown in Table 2 and Figure 2.

b) MOHAM

For the modification OHAM, we construct homotopy in the following form

(3.15)

(1− p)[u′′ + 8

x
u′ − 44x2 + 30x] =

H(p)[u′′ +
8

x
u′ + xu− x5 + x4 − 44x2 + 30x],

u(0) = 0, u′(0) = 0.

Consequently, with computing the first few components of the above equation, we obtain

u0(x) = x4 − x3 and uk(x) = 0, k ≥ 1. Thus the exact solution u(x) = x4 − x3 follows immediately.

Example 3. Consider the nonlinear Lane-Emden equation [26]

(3.16)
u′′ +

2

x
u′ + u3 − x6 − 6 = 0, 0 < x ≤ 1

u(0) = 0; u′(0) = 0.

The exact solution was found to be:

u(x) = x2.

a) OHAM
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Table 2. The exact and OHAM of order 2 solutions

x Exact solution OHAM solution Error

0.0 0.00000000 0.00000000 0.000000e+0

0.1 -0.00090000 -0.00090000 5.834689e-13

0.2 -0.00640000 -0.00640000 3.378419e-11

0.3 -0.01890000 -0.01890000 3.390894e-10

0.4 -0.03840000 -0.03840000 1.614572e-9

0.5 -0.06250000 -0.06250000 4.937685e-9

0.6 -0.08640000 -0.08640001 1.091703e-8

0.7 -0.10290000 -0.10290002 1.810387e-8

0.8 -0.10240000 -0.10240002 2.191974e-8

0.9 -0.07290000 -0.07290002 1.735431e-8

1.0 0.00000000 -0.00000001 1.079378e-8

Using OHAM, the homotopy formula for above equation is

(3.17) (1− p)[u′′ + 2

x
u′ − x6 − 6] = H(p)[u′′ +

2

x
u′ + u3 − x6 − 6]
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Figure 2. The Error between Exact solution and OHAM of order 2.
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Applying OHAM, we have the following zero, first and second orders solution:

u0(x) =
x8

72
+ x2,

u1(x) =
c1x

26

262020096
+

c1x
20

725760
+
c1x

14

5040
+
c1x

8

72
,

u2(x) =
c21x

44

896486037258240
+

491c21x
38

652367154216960

+
67c21x

32

293462507520
+

41c21x
26

91707336
+

47c21x
20

8467200
+
c21x

14

2520
+ ...

Now, u(x) can be obtained by adding zeroth-order, first-order and second-order solutions, and other higher

order solution if necessary as:

(3.18) u(x) = u0(x) + u1(x) + u2(x) + · · · .

By using the procedure mentioned in section 2, we calculate the constants c1 and c2,

That c1 = −0.9828444161739907 and c2 = 0.00007151252608689145 and using these values of c1 and c2

solution becomes:

u(x) ≈ 1.077521686069644× 10−15x44 + 7.2704108693801268× 10−13x38

+2.2054221289131272× 10−10x32 + 3.568499285010508× 10−8x26

+2.6536524254083618× 10−6x20 − 6.676910740296036× 10−6x14

+5.0809247569184018× 10−6x8 + x2.

The errors of OHAM are shown in Table 3 and Figure 3.

b) MOHAM

For the modification OHAM, we construct homotopy in the following form:

(3.19)
(1− p)[u′′ + 2

x
u′ − 6] = H(p)[u′′ +

2

x
u′ + u3 −X6 − 6].

u(0) = 0, u′(0) = 0.

Consequently, with computing the first few components of the equation in above , we obtain:

u0(x) = x2 and uk(x) = 0, k ≥ 1.

Thus the exact solution u(x) = x2 follows immediately.

Example 4. Consider nonlinear Lane-Emden equation

(3.20)
u′′ +

1

x
u′ + u′u− 2x3 − 2x− 4 = 0., , 0 < x ≤ 1

u(0) = 1, u′(0) = 0.
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Table 3. The exact and OHAM of order 2 solutions

x Exact solution OHAM solution Error

0.0 0.00000000 0.00000000 0.000000e+0

0.1 0.01000000 0.01000000 5.080918e-14

0.2 0.04000000 0.04000000 1.300607e-11

0.3 0.09000000 0.09000000 3.330402e-10

0.4 0.16000000 0.16000000 3.311941e-9

0.5 0.25000000 0.25000002 1.944237e-8

0.6 0.36000000 0.36000008 8.020490e-8

0.7 0.49000000 0.49000025 2.497424e-7

0.8 0.64000000 0.64000059 5.894919e-7

0.9 0.81000000 0.81000098 9.846713e-7

1.0 1.00000000 1.00000109 1.093692e-6

The exact solution for this problem is

u(x) = 1 + x2.

a) OHAM
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Figure 3. The Error between Exact solution and OHAM of order 2.
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Using OHAM, the homotopy formula for above equation is

(3.21) (1− p)[u′′ + 1

x
u′ − 2x3 − 2x− 4] = H(p)[u′′ +

1

x
u′ + u′u− 2x3 − 2x− 4].

Applying OHAM, we have the following zero, first and second orders solutions

u0(x) =
2x5

25
+

2x3

9
+ x2 + 1,

u1(x) =
4c1x

3

27
− c1x

2

2
+
c1x

4

24
− 2c1x

5

125
+
c1x

6

90
− x2

2
+

10x3

27
+
x4

12
+

8x5

125

+
43x6

810
+

4x7

1323
+

7x8

800
+

32x9

18225
− 4x11

15125
,

u2(x) =
11c1x

3

27
− c1x2 +

7c1x
4

36
− 7c1x

5

375
+

2651c1x
6

24300
+

169c1x
7

5670
+

13841c1x
8

1008000

+
40003c1x

9

3280500
+

41513c1x
10

1984500
+

21125249c1x
11

14407470000
+

1448683c1x
12

2309472000
+ ...

Now, u(x) can be obtained by adding zeroth-order, first-order and second-order solutions, and other higher

order solution if necessary as:

(3.22) u(x) = u0(x) + u1(x) + u2(x) + · · · .

By using the procedure mentioned in section 2, we calculate the constants c1 and c2;

That c1 = −0.72628701832663696695952478829064 and

c2 = −1.5666846630398228174101179583022 and using these values of c1 and c2 solution becomes:

u(x) ≈ −0.00000085071681405413514x17 − 0.0000090037081148592845x15

−0.000046460197145527956x14 − 0.0000325957072269133867x13

−0.0004196708982501607x12 − 0.0010061383709219621x11

−0.0012438236844093688x10 − 0.0070845567198262452x9

−0.0088779323735504041x8 − 0.014802190408287729x7

−0.03949085161037252x6 + 0.060720483845049083x5

−0.033464849107268245x4 + 0.23085479925375204x3

+0.82868411099505713x2 + 1.0

The errors of OHAM are shown in Table 4 and Figure 4.

b) MOHAM
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For the modification OHAM, we construct homotopy in the following form:

(3.23)
(1− p)[u′′ + 1

x
u′ − 4] = H(p)[u′′ +

1

x
u+ u′u− 2x3 − 2x− 4].

u(0) = 1, u′(0) = 0.

Consequently, with computing the first few components of the equation in above, we obtain:

u0(x) = x2 + 1 and uk(x) = 0, k ≥ 1.

Thus the exact solution u(x) = x2 + 1 follows immediately.
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Figure 4. The Error between Exact solution and OHAM of order 2.

Example 5. Consider the nonlinear Lane-Emden equation together with non-homogenous initial conditions

(3.24)
u′′ +

1

x
u′ + u2 − x4 − 2x3 − 7x2 − 6x− 1

x
− 13 = 0, 0 < x ≤ 1,

u(0) = 3, u′(0) = 1.

The exact solution is

u(x) = x2 + x+ 3.

a) OHAM
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Table 4. The exact and OHAM of order 2 solutions

x Exact solution OHAM solution Error

0.0 1.0000000 1.0000000 0.000000e+0

0.1 1.0100000 1.0113646 1.515084e-3

0.2 1.0400000 1.0460277 5.162654e-3

0.3 1.0900000 1.1047812 9.611622e-3

0.4 1.1600000 1.1882937 1.354462e-2

0.5 1.2500000 1.2969916 1.569918e-2

0.6 1.3600000 1.4308165 1.499403e-2

0.7 1.4900000 1.5887828 1.078549e-2

0.8 1.6400000 1.7682158 3.324701e-3

0.9 1.8100000 1.9634760 5.473674e-3

1.0 2.0000000 2.0137805 1.378047e-2

Using OHAM, the homotopy formula for above equation is

(3.25)
(1− p)[u′′ + 1

x
u′ − x4 − 2x3 − 7x2 − 6x− 1

x
− 13]

=H(p)[u′′ +
1

x
u′ + u2 − x4 − 2x3 − 7x2 − 6x− 1

x
− 13].
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Applying OHAM, we have the following zero, first and second orders solutions

u0(x) =
x6

36
+

2x5

25
+

7x4

16
+

2x3

3
+

13x2

4
+ x+ 3,

u1(x) =
c1x

14

254016
+
c1x

13

38025
+

5527c1x
12

25920000
+

289c1x
11

326700
+

27569c1x
10

5760000

+
1043c1x

9

72900
+

26027c1x
8

460800
+

3413c1x
7

29400
+

697c1x
6

1728

+
21c1x

5

50
+

41c1x
4

32
+

2c1x
3

3
+

9c1x
2

4
,

u2(x) =
c21x

22

2212987392
+

187c21x
21

39440746800
+

10762123c21x
20

220776192000000

+
18102734527c21x

19

58599022482000000
+

136024795219c21x
18

67319076464640000

+
5659427479327c21x

17

584591739732000000
+

45839677162501c21x
16

957426865274880000

+
9518465151599c21x

15

525930284880000000
+

19174941827183c21x
14

26024731729920000

+
2865630583c21x

13

1284323040000
+

4028274223c21x
12

526727577600
+

672969337c21x
11

36883123200

+
189132731c21x

10

3386880000
+

8513557c21x
9

85730400
+

10403c21x
8

36864
+

869c21x
7

2352
+

229c21x
6

216
+ ...

Now, u(x) can be obtained by adding zeroth-order, first-order and second-order solutions, and other higher

order solution if necessary as:

(3.26) u(x) = u0(x) + u1(x) + u2(x) + · · · .
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By using the procedure mentioned in section 2, we calculate the constants c1 and c2; That c1 = −0.63298312

and c2 = 0.027003035 and using these values of c1 and c2 solution becomes:

u(x) ≈ 1.81053× 10(−10)x22 + 1.89968× 10(−9)x21

+1.95312× 10(−8)x20 + 1.23776× 10(−7)x19

+8.09588× 10(−7)x18 + 0.00000387886x17

+0.0000191832x16 + 0.0000725142x15

+0.00029033x14 + 0.000861402x13

+0.00280001x12 + 0.00621459x11

+0.0164444x10 + 0.0220626x9

+0.0430888x8 + 0.00420649x7 − 0.0471842x6

−0.135857x5 − 0.298503x4 + 0.107803x3 + 1.36383x2 + x+ 3.

The errors of OHAM are shown in Table 5 and Figure 5.

b) MOHAM

For the modification OHAM, we construct homotopy in the following form:

(3.27)
(1− p)[u′′ + 1

x
u′ − 1

x
− 4] = H(p)[u′′ +

1

x
u′ + u2 − x4 − 2x3 − 7x2 − 6x− 1

x
− 13].

u(0) = 3, u′(0) = 1.

Consequently, with computing the first few components of the equation in above, we obtain:

u0(x) = x2 + x+ 3 and uk(x) = 0, k ≥ 1.

Thus the exact solution u(x) = x2 + x+ 3 follows immediately.

4. Conclusion

In this paper, the modified OHAM is applied to approximate solutions of linear and non-linear Lane-

Emden equations. The results show us that this method can obtain the exact solution by only one iteration.

So it is concluded that MOHAM is reliable and efficient technique for finding the solutions of Lane-Emden

equations.
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Table 5. The exact and OHAM of order 2 solutions

x Exact solution OHAM solution Error

0.0 3.0000000 3.0000000 0.000000e+0

0.1 3.1100000 3.1137148 -3.714898e-3

0.2 3.2400000 3.2548917 -1.489190e-2

0.3 3.3900000 3.4228773 -3.287772e-2

0.4 3.5600000 3.6159290 -5.592984e-2

0.5 3.7500000 3.8310578 -8.105909e-2

0.6 3.9600000 4.0640059 -1.040077e-1

0.7 4.1900000 4.3095555 -1.195580e-1

0.8 4.4400000 4.5625206 -1.225238e-1

0.9 4.7100000 4.8200323 -1.100364e-1

1.0 5.0000000 5.0861540 -8.615903e-2
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