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Total Capital Investment (TCI) = PMC+CC 

$ /m2  Permeator Module Cost (PMC)  

×(Ws/ )

 

Ws: Required Isentropic Power 
(HP) 

Compressor Cost (CC) 

Base Plant Cost (BPC)= ×TCI 

Project Contingency (PC)= ×BPC 

Total Facilities Investment (TFI)=BPC+PC 

Start-up Cost (SC)= ×OE (see below) 

Total Plant Investmet (TPI)=TFI+SC 

×TCI Capital Recovery Cost (CRC) 

$ /MMBTU Hydrocarbon Losses (HL) 

$ /m2 

Replacement Cost of Membrane   

Element (MRC) 

$ /kW-h Energy Cost (EC) 

$ /hr Labor Cost (LC) 

*TFI Maintenance Cost (MC) 

×TFI Local Taxes & Insurance (LTI) 

MRC+EC+ ×LC+MC+LTI Operating Expenses (OE) 

 

years Membrane Life 
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Payout time to calculate capital 
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Feed CO2 Content (%) 

 

Feed CH4 Content (%) 

 

Feed Pressure (psia) 
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1st stage 
2nd stage  

 

Retentate CO2 Content (%) 

  
Surface Area  (m2) 
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Membrane Cost ($)

  

HL ($/year) 

 

Permeate CH4 content (%) 

 

TSC ($/MSCF Feed) 
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            According to the position of Iran in the global gas 
reserves and the development of the country, natural gas 
sweetening process has a significant importance. Natural 
gas often contains contaminations such as CO2 and H2S 
that must be removed or lowered in content to the 
standard limits, before being delivered to the gas 
pipelines. Development of membrane technology in the 
world in the recent decades has made this technology 
more competitive with the conventional gas sweetening 
processes. 

          The aim and objective of this study is providing 
economic boundaries between amine, hybrid and 
membrane technologies for sweetening of mixed gases 
containing CH4, CO2 and H2S. Simulation of the amine 
plant has been done using the Aspen-Hysys software and 
the membrane system has been precisely modeled and 
simulated using the MATLAB software. Configuration of 
membrane system was considered as a 2- stage process 
using a recycled flow. The influence of different 
parameters, including gas inlet pressure, permeate 
pressure, composition and the effect of inlet gas flow on 
the cost of membrane and amine systems, has also been 
studied. The results showed that for the CO2/CH4 feed, 
economic boundaries include three zones: Amine, 
membrane, hybrid and in all range of concentrations the 
membrane unit is economically efficient. For the 
CO2/H2S/CH4 feed, economic boundaries include two 
zones: amine & hybrid that all gas refineries in our 
country are placed in the economic area of amine now.   
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