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Abstract. We give further results for Perron-Frobenius theory on the numerical

range of real matrices and some other results generalized from nonnegative matri-

ces to real matrices. We present an extension of Perron-Frobenius theory to the

spectrum and the numerical range of real matrices. We indicate two techniques for

establishing the main theorem of Perron and Frobenius on the numerical range. In

the first method, we use a corresponding version of Wielandt’s lemma. The second

technique involves graph theory.
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1. Introduction

By a nonnegative matrix we mean a matrix whose entries are nonnegative real

numbers. Let Mn(Mn(R)) be the set of n × n complex (real) matrices. We call a

matrix A ∈ Mn irreducible if n = 1, or n ≥ 2 and there does not exist a permutation

matrix P such that

P tAP =

(
B C

0 D

)
,
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where B and D are nonempty square submatrices and P t denotes the transpose of the

matrix P.

The famous classical Perron-Frobenius theorem on irreducible nonnegative matrices

has two parts. The first part says that if A is an irreducible nonnegative matrix, then

its spectral radius ρ(A) is always a simple eigenvalue and there is a corresponding

positive eigenvector. Here is its second part:

Suppose A has exactly h distinct eigenvalues with modulus ρ(A). (The quantity h is

now usually referred to as the index of imprimitivity of A.) Then each of the following

conditions holds.

(1) The set of eigenvalues of A with modulus ρ(A) consists precisely of ρ(A) times

all the h−th roots of unity.

(2) σ(A), the spectrum of A, is invariant under a rotation about the origin of the

complex plane through an angle of 2π/h; or, in other words, e2πi/hσ(A) = σ(A).

(3) If h ≥ 2, then A is an h−cyclic matrix, i.e., there is a permutation matrix P

such that P tAP is a matrix of the form

(1.1)



0 A12 0 . . . 0 0

0 0 A23 . . . 0 0
...

. . .
...

0 0 . . . 0 Ah−1,h

Ah,1 0 . . . 0 0


,

where the zero blocks along the diagonal are all square. The largest positive

integer h for which a matrix A is h−cyclic is called the cyclic index of A.

It has numerous applications, not only in many branches of mathematics, such as

Markov chains, graph theory, game theory and etc. [1], but in various fields of science

and technology, e.g. control theory [8, 14] and the population dynamics [7].

In [11] a new quantity for real matrices, the sign-real spectral radius, is defined,

which is a generalization of this theory. For A ∈ Mn(R), the real spectral radius of A

is defined by ρ0(A) = max {|λ| : λ a real eigenvalue of A}, where ρ0 (A) := 0 if A has

no real eigenvalues. A signature matrix is a diagonal matrix with diagonal entries +1

or −1. Note that there are 2n signature matrices of dimension n. Let φ denote the set

of signature matrices. The sign-real spectral radius of a real matrix A is defined by

ρS0 (A) = max
S∈φ

ρ0(SA).

The sign-real spectral radius of a real matrix A has the following properties (see [11,

Lemma 2.1, Theorem 2.15]):
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Lemma 1.1. Let A ∈Mn(R), signature matrices S1, S2 ∈ φ a real diagonal matrix D,

and a permutation matrix P be given. Then

(a) ρS0 (A) = ρS0 (S1AS2) = ρS0 (At) = ρS0 (P tAP ) = ρS0
(
D−1AD

)
.

(b) ρS0 (αA) = |α|ρS0 (A) for all α ∈ R.
(c) ρS0 (AD) = ρS0 (DA)

(d) ρS0 (A) ≤ ||A||p for all 1 ≤ p ≤ ∞.

(e) If A = At then ρS0 (A) = ||A||2.
(f) If A is a nonnegative matrix, then ρS0 (A) = ρ (A) .

(g) If there exists a matrix C ∈Mn(R), rank(C) = 1 with cij = sign(aij) if aij ̸= 0,

and cij ∈ {−1, 1} if aij = 0, then there exist signature matrices S1, S2 such that

|A| = S1AS2 and ρS0 (A) = ρS0 (|A|) .

In the sequel, we add the assumption that |A| = S1AS2 for some S1, S2 ∈ φ. This

assumption is necessary for the validity of some of the results (see Example 3.4 and

Example 4.9).

The sign-real spectral radius of a real matrix A has similar properties to the spectral

radius of a nonnegative matrix (cf. [11]). For example, if A is a real matrix, then its

sign-real spectral radius is an eigenvalue of SA for some S ∈ φ [11, Lemma 2.2]. In

addition, if A is irreducible, then ρS0 (A) is a simple eigenvalue of SA for some S ∈ φ

[11, Theorems 2.7 and 3.9]. It has also been applied to engineering problems (see, for

example, [12, 10, 13] and the references therein). In Section 3, we give some results on

the sign-real spectral radius.

For A ∈Mn, the numerical range of A is defined as follows (see, for instance, [11, 4]):

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1},

which is a useful concept in studying matrices and operators. The numerical radius of

A is ω(A) = max {|z| : z ∈W (A)} . The Perron-Frobenius theory has been extended to

the numerical range of a nonnegative matrix by Issos in his unpublished Ph.D. thesis

[5] and then generalized in [17]. In the course of proving the main result of Issos for

real matrices, a new type of numerical radius is defined in [17] as follows:

Definition 1.2. For A ∈Mn(R) the sign-real numerical radius is defined and denoted

by ωS
0 (A) = maxS∈φ ω0(SA), where ω0 (A) = max{ |z| : z ∈W (A) ∩ R }.

Note that the sign-real numerical radius is well defined, because if A is a real matrix,

then its numerical rangeW (A) is symmetric with respect to the real axis. The following

properties of sign-real numerical radius will be used in the proofs of the main results

of this paper (see [17, Lemma 2.1, Theorem 2.1 and Lemma 2.2]).
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Lemma 1.3. Let A be a real matrix.

(1) ωS
0 (A) = ωS

0 (A
t).

(2) For S1 and S2 being signature matrices, ωS
0 (A) = ωS

0 (S1AS2) .

(3) For a permutation matrix P, ωS
0 (A) = ωS

0 (P
tAP ).

(4) ρS0 (A) ≤ ωS
0 (A) ≤ ∥A∥, where ∥ · ∥ is the operator norm.

(5) There exists some S ∈ φ such that ωS
0 (A) ∈W (SA).

(6) There exist S1, S2 ∈ φ, and a nonnegative unit vector x such that ωS
0 (A) =

xtS1AS2x.

(7) ωS
0 (A) ≤ ωS

0 (|A|) , where |A| is the matrix whose entries are the absolute values

of the entries of A. Suppose, in addition, that A is a nonnegative matrix, then

ω(A) = ωS
0 (A) = max { ztA z : z ∈ Rn

+, ∥z∥ = 1}.

These show that the sign-real numerical radius of a real matrix has similar properties

to the numerical radius of a nonnegative matrix. In Section 4, we show that under some

conditions on the matrix A, the set of points of W (SA), with modulus ωS
0 (A) for some

S ∈ φ, consists precisely of ωS
0 (A) times all the h-th roots of unity, i.e., the main

theorem of Issos on numerical range of a real irreducible matrix A.

2. Preliminaries

We always use A = (ars) to denote an n×n complex matrix. The following notation

will be adopted:

A∗ the conjugate transpose of A;

H(A) the Hermitian part of A, i.e., (A+A∗)/2;

λmax(H(A)) the largest eigenvalue of H(A);

|x| the vector (|x1|, |x2|, · · · , |xn|)t;
|A| ≤ |B| |ars| ≤ |brs| for all r, s;

G(A) the digraph of A;

⟨n⟩ the set of {1, 2, · · · , n};
arg(z) the argument of the complex number z.

For a vector x ∈ Cn, we denote by ∥x∥ the Euclidean norm of x, i.e., ∥x∥ =

(x∗x)
1/2

. For a matrix A ∈ Mn, we denote by ∥A∥ the operator norm of A, i.e.,

∥A∥ = max∥x∥=1 ∥Ax∥, where ∥ · ∥ is the vector norm. Also, we denote by ||A||2, the
spectral norm of A, i.e., ||A||22 = ρ(A∗A).

The directed graph, G(A), of A ∈Mn consists of the set of vertices {1, 2, ..., n} and a

set of directed edges (i, j) connecting vertex i to vertex j if and only if aij ̸= 0. We say
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G(A) is strongly connected if for any two vertices i, j of G(A), there is a path in G(A)

from i to j and vice versa. It is well known that A is irreducible if and only if G(A)

is strongly connected (see, for instance, [3, Theorem 6.2.24]). A circuit is a sequence

of directed edges (r1, r2), (r2, r3), ..., (rt, r1) from G(A). A cycle is a circuit such that

r1, r2, · · · , rt are all distinct. We use r → s to denote the arc (r, s) traversed from r to

s and refer to it as a positive link, and we use s← r to denote the arc (r, s) traversed

from s to r and refer to it as a negative link. Let θ = ((r1, r2), (r2, r3), · · · , (rt, r1)) be
the cycle of G(A). The number of positive links minus the number of negative links in

θ is called the signed length of θ and is denoted by s(θ).

By a block-shift matrix, we mean a square matrix A = (Ars)1≤r,s≤h in block form

with square diagonal blocks such that Ars = 0 whenever s ̸= r+ 1, or equivalenty if A

is in the form (1.1) and with Ah,1 = 0.

Given A,B ∈Mn, A is said to be diagonally similar to B if there exists a nonsingu-

lar diagonal matrix D such that A = D−1BD; if, in addition, D can be chosen to be

unitary, then we say A is unitarily diagonally similar to B. If there exists a signature

matrix S such that A = SBS we say that A and B are sign similar. In 1988, Her-

shkowitz and Schneider [2] listed equivalent conditions for a matrix A to be unitarily

diagonally similar to |A| as follows:
Let a matrix A = (aij) ∈Mn be irreducible. Then the following assertions are equiva-

lent.

(i)A = DAD−1, where D is a unitary diagonal matrix;

(ii)
∣∣(I −A)−1

∣∣ = (I − |A|)−1
;

(iii) for every circuit (i1, · · · , ik+1), ik+1 = i1, 1 ≤ ij ≤ n, j = 1, · · · , k, k ≥ 1, in the

graph of the matrix A the relation

k∏
j=1

aij ij+1 =

∣∣∣∣∣∣
k∏

j=1

aij ij+1

∣∣∣∣∣∣
is valid, i.e., all circuit products of A are positive.

Note that in the above statements, for real matrix A, the unitary diagonal matrix D

is a signature matrix, i.e., A and |A| are sign similar. This means that for real matrix

A, the relations (ii) and (iii) are equivalent with |A| = SAS for some S ∈ φ.

Remark 2.1. In this paper we give results of Perron-Frobenius theory for real and

irreducible matrix A such that |A| = S1AS2 for some S1, S2 ∈ φ. For the restricted

case S1 = S2 := S, we can obtain the same results with the summation |A| = SAS for

some S ∈ φ, where is equivalent with the relations (ii) and (iii).
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3. Perron-Frobenius theory for real matrices

Rump [11] has offered a way to generalize the Perron-Frobenius theory to arbitrary

real matrices. In this section, we generalize Wielandt’s lemma and Perron- Frobenius

theorem from nonnegative matrices to real matrices.

To prove our main results in this section, we need the following Wielandt’s lemma

for nonnegative matrices [9, Chapter II, Theorem 2.1]:

Wielandt’s lemma. Let A ≥ 0 be irreducible, and C ∈Mn(C) be such that |C| ≤ A,

then for every eigenvalue t of C, we have |t| ≤ ρ(A). Furthermore |t| = ρ(A) if and only

if C = eiφEAE−1, where t = eiφρ(A) and |E| = I.

The following lemma is an extension of the Wielandt’s lemma for real matrices.

Lemma 3.1. Let A ∈ Mn(R) be irreducible, and |A| = S1AS2 for some S1, S2 ∈ φ.

Let C ∈Mn(C) be such that |C| ≤ |A|. Then for every eigenvalue t of C we have |t| ≤
ρS0 (A). Furthermore |t| = ρS0 (A) if and only if C = eiφE|A|E−1, where t = eiφρS0 (A),

and |E| = I.

Proof. By assumption there exist some S1, S2 ∈ φ such that |A| = S1AS2. Thus by

Lemma 1.1(a) and Lemma 1.1(f) we have ρS0 (A) = ρS0 (|A|) = ρ(|A|). So the conclusion

that the moduli of the eigenvalues of C are bounded by ρS0 (A) is clear by Wielandt’s

lemma. The last part of the theorem is an immediate consequence of the Wielandt’s

lemma. □

The Perron-Frobenius theorem for nonnegative matrices can now be stated for real

matrices.

Theorem 3.2. Let A ∈Mn(R) be irreducible, and |A| = S1AS2 for some S1, S2 ∈ φ.

Let S ∈ φ such that ρS0 (A) ∈ σ(SA) and suppose SA has h ≥ 1 distinct eigenvalues

λ1, . . . , λh of modulus ρS0 (A). Then λ1, · · · , λh are the distinct h-th roots of (ρS0 (A))
h.

Proof. ρS0 (A) is an eigenvalue of SA for some S ∈ φ, so by applying Lemma 3.1 with

C = SA, we have

(3.1) SA = E|A|E−1, |E| = I.

Let λt = eiφtρS0 (A), t = 1, 2, · · · , h. Since |λt| = ρS0 (A), again by applying Lemma 3.1

with C = SA, we have

(3.2) SA = eiφtEt|A|E−1
t , |Et| = I, t = 1, 2, · · · , h.



PERRON-FROBENIUS THEORY ... JMMRC VOL. 2 , NUMBER 2 (2013) 7

Hence, by (3.1) and (3.2), SA and eiφtSA are similar. Since ρS0 (A) is a simple eigen-

value of SA for some S ∈ φ [11, Theorems 2.7 and 3.9], it follows that, for each

t, λt = eiφtρS0 (A) is a simple eigenvalue of eiφtSA, and thus of SA. So, again by

Lemma 3.1 and (3.2), we have

SA = eiφtEt

(
eiφrErSAE−1

r

)
E−1

t = ei(φt+φr)(EtEr)SA(EtEr)
−1.

This shows that SA and ei(φt+φr)SA are similar for any t and r. We conclude that

ei(φt+φr)ρS0 (A) is an eigenvalue of SA, and therefore ei(φt+φr) must be one of the

numbers eiφ1 , · · · , eiφh . Hence the h distinct numbers eiφ1 , · · · , eiφh are closed under

multiplication, and therefore they are the h-th roots of unity. □

Notice that, in the above result, we are assuming that λ1, · · · , λh be the eigenvalues

of SA of modulus ρS0 (A) for some S ∈ φ, and also, ρS0 (A) ∈ σ(SA). This is the right

setting for results. The following example will show it.

Example 3.3. Consider the matrix A ∈M8(R) given by

A =



0 0 −2 0 0 −6 0 0

−1 0 0 0 0 0 −7 0

0 0 0 2 3 0 0 4

0 −3 0 0 0 0 0 0

0 3 0 0 0 0 0 0

0 0 0 4 0 0 0 2

0 0 1 0 0 3 0 0

0 −9 0 0 0 0 0 0


,

such that |A| = S1AS2 for signature matrices S1 = diag(−1,−1, 1, 1,−1, 1, 1, 1), and
S2 = diag(1,−1, 1, 1, 1, 1, 1, 1). Then by above result, there exist signature matrices

T1 = diag(1, 1, 1,−1, 1, 1,−1,−1), T2 = diag(−1, 1,−1,−1, 1,−1, 1,−1),

T3 = diag(−1,−1, 1,−1, 1, 1, 1,−1) , T4 = diag(−1, 1, 1, 1,−1, 1, 1, 1),

such that λ1 = −5.9685, λ2 = −5.9685i, λ3 = 5.9685i, λ4 = 5.9685 are the eigen-

values of TjA of modulus ρS0 (A) = 5.9685 for j = 1, ..., 4. Also, for the signature

matrix S = diag(−1, 1, 1,−1, 1, 1, 1,−1) with σ(SA) = {−4.2204 + 4.2204i, −4.2204−
4.2204i, 4.2204−4.2204i, 4.2204+4.2204i, 0, ..., 0}, we observe that the nonzero eigen-

values of SA have absolute value equal to ρS0 (A) = 5.9685, but they are not equal to

4−th roots of (ρS0 (A))
4.

Our next example shows that Theorem 3.2 fails if the assumption |A| = S1AS2 is

dropped.
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Example 3.4. Consider the matrix A ∈M3(R) given by

A =


2 3 3

2 −3 1

2 1 −3

 ,

such that |A| ≠ S1AS2 for all signature matrices S1, S2 ∈ φ. But λ1 = −4, λ2 =

−4, λ3 = 4 are the eigenvalues of A of modulus ρS0 (A) = 4; this means that they are

not equal to 3−th roots of (ρS0 (A))3.

Corollary 3.5. Let A ∈Mn(R) be irreducible, and |A| = S1AS2 for some S1, S2 ∈ φ.

Let S ∈ φ such that ρS0 (A) ∈ σ(SA) and suppose SA has h ≥ 1 distinct eigenvalues

λ1, . . . , λh of modulus ρS0 (A). Then the spectrum of SA is invariant under a rotation

through 2π/h, but not through a positive angle smaller than 2π/h.

Proof. Let the spectrum of ei2π/hSA be β = (ei2π/hλ1, e
i2π/hλ2, · · · , ei2π/hλn). It

was shown in the proof of the preceding theorem that the matrices SA and e2πi/hSA

are similar, and therefore β is the spectrum of SA as well. □

4. Issos’ results for real matrices

We indicate two techniques for establishing the main theorem of Issos on the nu-

merical range of real matrices. In the first method, we use a corresponding version of

Wielandt’s lemma. The second technique involves graph theory. These two techniques

are applied to establish the main theorem (Theorem 4.7) and to derive some results

for the sign-real numerical radius.

A relation between the sign-real numerical radius of A and the sign-real spectral

radius of H(SA) for some S ∈ φ, is observed in the following theorem.

Theorem 4.1. If A ∈ Mn(R), then there exists some S ∈ φ such that ωS
0 (A) =

ρS0 (H(SA)) = λmax(H(SA)).

Proof. By Lemma 1.3(5), ωS
0 (A) ∈W (SA) for some S ∈ φ. Then we can find a nonzero

vector u such that u∗(SA)u = ωS
0 (A)∥u∥2, and so u∗(SA)∗u = ωS

0 (A)∥u∥2. Adding

the two equations, we obtain

(4.1) u∗ (ωS
0 (A) I −H(SA)

)
u = 0.

Since H(SA) is Hermitian matrix, therefore by Lemma 1.1 and Lemma 1.3

∥H(SA)∥2 = ρ0(H(SA)) = ω0(H(SA)) ≤ ωS
0 (H(SA)) ≤ ∥H(SA)∥2,
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So ∥H(SA)∥2 = ωS
0 (H(SA)).On the other hand, by Lemma 1.1(e) we have ∥H(SA)∥2 =

ρS0 (H(SA)). Thus

(4.2) ωS
0 (H(SA)) = ρS0 (H(SA)).

It follows from the property of ωS
0 (A) and [4, Property 1.2.7] that

(4.3) ωS
0 (A+A∗) ≤ ωS

0 (A) + ωS
0 (A∗) = 2ωS

0 (A).

Thus by (4.2) and (4.3), we have

ωS
0 (A) = ωS

0 (SA) ≥ ωS
0 (H(SA)) = ρS0 (H(SA)) ≥ λmax(H(SA)).(4.4)

In view of (4.1) and (4.4), the matrix
(
ωS
0 (A) I −H(SA)

)
is positive semidefinite. It

follows that
(
ωS
0 (A) I −H(SA)

)
u = 0, so u is an eigenvector of H(SA) corresponding

to ωS
0 (A). Then we have ωS

0 (A) = ρS0 (H(SA)) = λmax(H(SA)). □

Lemma 4.2. Let A be a real matrix and |A| = S1AS2 for some S1, S2 ∈ φ. Then

ωS
0 (A) = max { zt |A| z : z ∈ Rn

+, ∥z∥ = 1}. Moreover, ωS
0 (A) ∈W (|A|).

Proof. There exists some S ∈ φ such that

ωS
0 (A) = ω0 (SA) = max { |x∗SAx| : (x∗SAx) ∈ R, x ∈ Cn, ∥x∥ = 1}

≤ max
{
|x|t |SA| |x| : (x∗SAx) ∈ R, x ∈ Cn, ∥x∥ = 1

}
= max

{
zt |A| z : z ∈ Rn

+, ∥z∥ = 1
}

≤ ω0 (|A|) ≤ ωS
0 (|A|) = ωS

0 (S1AS2) = ωS
0 (A).

where the last equality follows from Lemma 1.3(2). Hence, the above inequalities all

become equalities, i.e., ωS
0 (A) = max { zt|A|z : z ∈ Rn

+, ∥z∥ = 1}. Furthermore,

the continuous real-valued map z −→ zt|A|z attains its maximum on the intersection

of the unit sphere with the nonnegative orthant Rn
+, which is a compact set. Thus

ωS
0 (A) ∈W (|A|). □

The next result enables us to show that for real and irreducible matrix A there is a

positive unit vector x such that ωS
0 (A) = x∗S1AS2x.

Lemma 4.3. Let A be a real irreducible matrix and |A| = S1AS2 for some S1, S2 ∈ φ.

Then, any nonnegative unit vector x ∈ Rn
+ such that xt|A|x = ωS

0 (A) is in fact positive.

Proof. By Lemma 4.2, there exists a unit nonnegative vector x such that ωS
0 (A) =

xt|A|x. Similar to Theorem 4.1, we can conclude (ωS
0 (A)I −H(|A|))x = 0. Therefore

H(|A|)x = ωS
0 (A)x, which implies that

(4.5) (H(|A|) + I)n−1x = (ωS
0 (A) + 1)n−1x.
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By assumption A is irreducible, so (H(|A|) + I)n−1 > 0 (see, for instance, [9, Chapter

I, Corollary 2.2]), and (H(|A|) + I)n−1x > 0. Thus by (4.5), x > 0. □

In the next lemma, we prove a version of Wielandt’s lemma for the sign-real numer-

ical radius.

Lemma 4.4. Let A,B ∈ Mn, and assume that A is a real irreducible matrix. Let

|A| = S1AS2 for some S1, S2 ∈ φ and |B| ≤ |A|. If ε is a unit complex number such

that εωS
0 (A) ∈W (B), then εE|A|E−1 = B for some unitary diagonal matrix E.

Proof. Let x be a unit vector such that x∗Bx = εωS
0 (A). Then

ωS
0 (A) = x∗(ε̄B)x ≤ |x|t|B||x| ≤ |x|t|A||x| ≤ ωS

0 (A),

where the last inequality follow from Lemma 4.2. Hence, the above inequalities all

become equalities, i.e., |x|t|A||x| = ωS
0 (A). Since A is irreducible, by Lemma 4.3, we

have |x| > 0. Now, in view of

|x|t(|A| − |B|)|x| = ωS
0 (A)− ωS

0 (A) = 0, |A| − |B| ≥ 0 and |x| > 0,

we have |B| = |A|. Let E denote the unitary diagonal matrix diag(x1/|x1|, ..., xn/|xn|),
where x = (x1, · · · , xn)

t. Then we have

(4.6) |x|tE∗(ε̄B)E|x| = x∗(ε̄B)x = ωS
0 (A),

where the second equality has already been established above. But we also already

have |x|t|A||x| = ωS
0 (A), so by (4.6) we have

(4.7) |x|tE∗(ε̄B)E|x| = |x|t|A||x| = ωS
0 (A).

Since |E∗(ε̄B)E| = |B| = |A|, |x| > 0, therefore by (4.7), we obtain ε̄E−1BE = |A|. □

Lemma 4.5. Let A ∈ Mn(R) be irreducible, and |A| = S1AS2 for some S1, S2 ∈ φ.

Then there exists some S ∈ φ such that E−1|A|E = SA, where |E| = I.

Proof. By Lemma 1.3 and [6, Proposition 3.3], we have

(4.8) ωS
0 (A) = ωS

0 (S1AS2) = ωS
0 (|A|) = ω(|A|) = ρ(H(|A|)) = ρS0 (H(|A|)).

where the last equality follows from Lemma 1.1(f). Thus, from (4.8) and Theorem

4.1, we conclude ρS0 (H(|A|)) = ωS
0 (A) = ρS0 (H(SA)) for some S ∈ φ. In view of

|H (SA)| ≤ H (|A|) and the irreducibility of H(|A|), by Lemma 3.1, it follows that

E (H (SA))E−1 = H(|A|), i.e., E
(
SA+ (SA)t

)
E−1 = |A|+ |A|t,

where E := diag(e1, · · · , en), |E| = I. By equating the corresponding entries of both

sides, we obtain er (brt + btr) e
−1
t = |art|+ |atr|, for all r, t ∈ ⟨n⟩, where brt = (SA)rt.
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Since
∣∣er brt e−1

t

∣∣ = |art| and ∣∣er btr e−1
t

∣∣ = |atr| (as |er| = |et| = 1), it follows that

er brt e
−1
t = |art|

(
and er btr e

−1
t = |atr|

)
for all r, t ∈ ⟨n⟩. Hence, we have ESAE−1 =

|A|. □

Remark 4.6. In view of Lemma 4.5, the matrix E is a signature matrix, i.e., there

exists S ∈ φ such that |A|, SA are sign similar. So in the proofs of Theorem 4.1 and

Lemma 4.5, we see that the signature matrix S is equal to the signature matrix S1 that

ωS
0 (A) ∈W (S1A).

Now we are ready to prove our main result in this section.

Theorem 4.7. Let A ∈Mn(R) be irreducible, and |A| = S1AS2 for some S1, S2 ∈ φ.

Let S ∈ φ such that ρS0 (A) ∈ σ(SA) and suppose SA has h ≥ 1 distinct eigenvalues

λ1, . . . , λh of modulus ρS0 (A). Then

(4.9) {z ∈W (TA) : |z| = ωS
0 (A)} = {ωS

0 (A)e
i(θ+2πt/h) : t = 0, 1, · · · , h− 1},

for some T ∈ φ with θ = 0 or θ = π/h.

Proof. By Theorem 3.2, we have e2πi/hρS0 (A) ∈ σ(SA) for some S ∈ φ, and so by

(3.1) and (3.2), e2πi/hA is unitarily diagonally similar to A. Hence we have W (A) =

W (e2πi/hA) [4, Property 1.2.8]. But we also have ωS
0 (A) ∈ W (TA) for some T ∈

φ (Lemma 1.3(5)). Let θ ∈ [0, 2π) be the principal argument such that ωS
1 (A) ∈

W (e−iθTA). Hence ωS
0 (A)e

i(θ+2πt/h) ∈W (TA) for t = 0, 1, · · · , h− 1, i.e.,

{ωS
0 (A)e

i(θ+2πt/h) : t = 0, 1, · · · , h− 1} ⊆ {z ∈W (TA) : |z| = ωS
0 (A)}.

On the other hand, consider any unit complex number ε for which εωS
0 (A) ∈ W (TA)

for some T ∈ φ. By applying Lemma 4.4, with B = TA, and Remark 4.6, εA is

unitarily diagonally similar to A, equivalently, the matrices e−iθA and e−iθεA are

unitarily diagonally similar. But ρS0 (A) is an eigenvalue of σ(SA) for some S ∈ φ,

hence so is ερS0 (A). By Theorem 3.2, ε must be an h-th root of unity, i.e., ε = e2πti/h

for t = 0, 1, · · · , h− 1. This follows that

{z ∈W (TA) : |z| = ωS
0 (A)} ⊆ {ωS

0 (A)e
i(θ+2πt/h) : t = 0, 1, · · · , h− 1}.

Since A ∈ Mn(R), so W (A) is symmetric with respect to the real axis. If we consider

θ ̸= 0, we obtain 2π − θ = θ + 2π(h − 1)/h. Hence, θ = π/h and this completes the

proof. □

Remark 4.8. If in Theorem 4.7, the assumption |A| = S1AS2 is dropped, then (4.9)

is not satisfied. Since the above proof depends heavily on the Theorem 3.2 and in



12 M. ZANGIABADI, H.R. AFSHIN

Example 3.4 we observed that Theorem 3.2 fails if the assumption |A| = S1AS2 is

dropped.

We illustrate Theorem 4.7 in the following example.

Example 4.9. In this example, we show that there exists some S ∈ φ such that

(4.9) holds with θ = 0, and also there exists some T ∈ φ such that (4.9) holds

with θ = π/h. Consider the real matrix A shown in Example 3.4. Then there ex-

ists some S ∈ φ such that ωS
0 (A) = 7.151. For example, for the signature matrix

S = diag(1, 1, 1,−1, 1, 1,−1,−1), we obtain ωS
0 (A) = ω0(SA) = 7.151, and the relation

(4.9) holds with θ = 0. For the signature matrix T = diag(1, 1,−1,−1, 1,−1,−1,−1),
we have also the relation (4.9) with θ = π/4.

Figure 1 illustrates in detail the above example.

Figure 1. The numerical range of SA, TA. The graph on the

left shows the numerical range of SA such that the numbers

ωS
0 (A), e

iπ/2ωS
0 (A), e

iπωS
0 (A), e

i3π/2ωS
0 (A) are belong to W (SA), with

modulus ωS
0 (A). The graph on the right shows the numeri-

cal range of TA such that the numbers eiπ/4ωS
0 (A), e

i3π/4ωS
0 (A),

ei5π/4ωS
0 (A), e

i7π/4ωS
0 (A) are belong to W (TA), with modulus ωS

0 (A).

In the rest of this section, we will prove Theorem 4.7 in a graph theory manner by

using the following results.

Lemma 4.10. Let A ∈Mn(R) be such that H(A) is irreducible, and |A| = S1AS2 for

some S1, S2 ∈ φ. Let α be a real number such that eiα ̸= 1, and suppose eiαωS
0 (A) ∈

W (SA) for some S ∈ φ.
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(i) If α is an irrational multiple of π, then A is permutationally similar to a block-

shift matrix.

(ii) If α is a rational multiple of π, say α = 2πp/q, where p, q are relatively prime

integers, q being positive, then all cycles of G(A) are of signed length an integral

multiple of q.

In any case, A is diagonally similar to eiαA.

Proof. Let z = (β1, · · · , βn)
t
be a unit vector of Cn such that z∗SAz = eiαωS

0 (A) for

some S ∈ φ. We have

ωS
0 (A) = |z∗SAz| =

∣∣∣∣∣∣
∑

r,t∈⟨n⟩

β̄r βt srr art

∣∣∣∣∣∣ ≤
∑

r,t∈⟨n⟩

∣∣β̄r

∣∣ |βt| |art|(4.10)

= |z|∗ |A| |z| = |z|∗ H (|A|) |z| ≤ λmax (H (|A|)) = ρ (H (|A|))

= ω(|A|) = ωS
0 (|A|) = ωS

0 (A).

Hence, the above inequalities all become equalities. As a consequence, |z| is an eigenvec-

tor of the irreducible nonnegative matrix H (|A|) corresponding to its spectral radius,

and then, by Perron-Frobenius theorem, |z| > 0. By the condition for equality in (4.10)

and the assumption that z∗SAz = eiα|z∗SAz|, we have

βr βt |art| = eiα
∣∣βr βt srr art

∣∣ for all r, t ∈ ⟨n⟩.

This implies that if (r, t) is an arc in G(A), then the quantity arg(βt) − arg(βr), is

equal to α or −α according to whether the link is positive or negative. Hence, if we

go around a cycle θ of G(A) once, the total change of argument of the corresponding

components of z is s(θ)α, and clearly this latter quantity must be an integral multiple

of 2π. Thus, if α is an irrational multiple of π, then necessarily all cycles of G(A)

have zero signed length. In this case by [15, Theorem 1] A is permutationally similar

to a block-shift matrix, and by [16, Corollary 4.7] A is diagonally similar to γA for

any nonzero complex number γ, and in particular A is diagonally similar to eiαA. If

α = 2πp/q, where p, q are relatively prime integers, q being positive, then necessarily all

cycles of G(A) have signed length an integral multiple of q. In this case [16, Theorem

4.1] the latter is equivalent to the condition that A is diagonally similar to e2πi/qA. It

follows that A is diagonally similar to e2πpi/qA. The proof is complete. □

Lemma 4.11. Let A ∈ Mn(R) be irreducible, and |A| = S1AS2 for some S1, S2 ∈ φ.

If α is any real number, then the following are equivalent:

(a) A is diagonally similar to eiαA.

(b) eiαW (SA) = W (SA) for some S ∈ φ.
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Proof. Suppose A is diagonally similar to eiαA. By [6, Remark 2.1], A is unitarily

diagonally similar to eiαA, therefore the condition (b) holds. When A is real matrix,

we have ωS
0 (A) ∈ W (SA) for some S ∈ φ. In this case, if condition (b) holds, then

eiαωS
0 (A) ∈W (SA). By Lemma 4.10, the condition (a) holds. □

Lemma 4.12. Let A ∈ Mn(R) be irreducible, and |A| = S1AS2 for some S1, S2 ∈ φ.

If the directed graph of A has at least one cycle with nonzero signed length, then the

cyclic index of A is equal to the largest positive integer h that satisfies e2πi/hW (SA) =

W (SA) for some S ∈ φ. In addition, this common value is also equal to the number

of eigenvalues with absolute value equal to ρS0 (A).

Proof. By Lemma 4.11, there exists some S ∈ φ such that the largest positive integer

h for which e2πi/hW (SA) = W (SA) is the same as the largest positive integer h for

which A is diagonally similar to e2πi/hA. If G(A) has at least one cycle with nonzero

signed length, then by [16, Theorem 4.1] the latter number is equal to the largest

positive integer h for which A is h−cyclic, i.e., the cyclic index of A. By [16, Theorem

4.1], again this common value is also equal to the largest positive integer h for which A

and e2πi/hA have the same peripheral spectrum, which by Theorem 3.2 is clearly the

number of eigenvalues with absolute value equal to ρS0 (A). □

In the following, we prove Theorem 4.7 in a graph theory manner:

Consider an irreducible real matrix A such that |A| = S1AS2 for some S1, S2 ∈ φ.

Let S ∈ φ such that ρS0 (A) ∈ σ(SA) and suppose SA has h ≥ 1 distinct eigenvalues

λ1, . . . , λh of modulus ρS0 (A). We have ωS
0 (A) ∈ W (TA) for some T ∈ φ (Lemma

1.3(5)). Let θ ∈ [0, 2π) be the principal argument such that ωS
0 (A) ∈W (e−iθTA), and

hence by Lemma 4.12, we have

{ωS
0 (A)e

i(θ+2πt/h) : t = 0, 1, · · · , h− 1} ⊆ {z ∈W (TA) : |z| = ωS
0 (A)}.

On the other hand, if there exists a real number α such that eiαωS
0 (A) ∈ W (TA)

for some T ∈ φ, then A can not be permutationally similar to a block-shift matrix

(because A is irreducible). By Lemma 4.10, α = 2πp/q, where p, q are relatively prime

integers, and q is positive and divides the greatest common divisor of the signed lengths

of the cycles of G(A). By [16, Theorem 4.1] the latter number is equal to h (cf. the

proof of Lemma 4.12). It follows that eiαωS
0 (A) is equal to one of the h numbers

e2πti/hωS
0 (A), t = 0, 1, · · · , h− 1. Therefore we have proved that

{z ∈W (TA) : |z| = ωS
0 (A)} ⊆ {ωS

0 (A)e
i(θ+2πt/h) : t = 0, 1, · · · , h− 1}.

The proof that θ = 0 or θ = π/h, is similar to Theorem 4.7.
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