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Abstract. In this paper by use of mathematical modeling of an observer [14,

15] the notion of relative information functional for relative dynamical systems

on compact metric spaces is presented. We extract the information function of

an ergodic dynamical system (X,T ) from the relative information of T from

the view point of observer χX , where X denotes the base space of the system.

We also generalize the invariance of the information function of a dynamical

system , under topological isomorphism, to the relative information functional.
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1. Introduction

Shannon [22] firstly introduced the concept of information function and investi-

gated some properties of this function. Then, McMillan [12], Dumitrescu [6] and Tok

[25] has proved some properties of the fuzzy information function. Recently, Guney,

Tok and Yamankaradeniz defined fuzzy local information function and stated some

properties of this function in [8]. The importance of information in ergodic theory

arises from it’s invariance under isomorphism. Therefore, systems with different

information functions cannot be isomorphic. One of the main objects in physical

phenomena is the ”observer”. A modeling for an observer of a set X is a fuzzy set

JOURNAL OF MAHANI MATHEMATICAL RESEARCH CENTER

VOL. 2, NUMBER 2 (2013) 17-28 .

c⃝MAHANI MATHEMATICAL RESEARCH CENTER

17



18 U. MOHAMMADI

Θ : X → [0, 1] [14, 15, 16, 17, 18, 19]. In fact this kinds of fuzzy sets are called ”one

dimentional observes” .

In this paper we would like to use of the notion of observer to define the relative

information functional for topological dynamical systems. The idea of the definition

is based on the relation between ”experiance ” and ”information” from the view

point of an observer. We assign a weight factor f(x) to any point x ∈ X, where

X denotes the base space of the system. The weight factor can be cosidered as the

local loss of information caused by the lack of experience of any intelligent point.

we also generalize the invariance of the information function of a system, under

topological isomorphism, to the relative information functional.

In this article the set of all probability measures on X preserving T is denoted by

M(X,T ). We also write E(X,T ) for the set of all ergodic measures of T .

2. Preliminary facts

Definition 2.1. Let ξ = {A1, ..., An} be a finite measurable partition of X and

µ ∈ M(X,T ). Then if Ai ∈ ξ; i = 1, ..., n is an observed event. The information

I(ξ, µ) carried by ξ may be defined as;

I(ξ, µ) = − logµ(Ai);

and the quantity

I(x, ξ, µ) = −
n∑

i=1

χAi(x) logµ(Ai);

for each x ∈ X is called information function. Where χA is the characteristic

function of A defined by

χA(x) =

{
1 if x ∈ A

0 if x ∈ A

Definition 2.2. A partition ξ is a refinement of a partition η, if every element of

η is a union of elements of ξ and it is denoted by η ≺ ξ.

Definition 2.3. Given two partitions ξ, η their common refinement is defined as

follows:

ξ ∨ η = {Ai ∩Bj ;Ai ∈ ξ,Bj ∈ η}.
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Theorem 2.4. Let ξ and η be two partitions of X with I(x, ξ, µ) < ∞ and I(x, η, µ) <

∞, for all x ∈ X. Then, for all x ∈ X

(i) I(x, ξ, µ) ≥ 0;

(ii) I(x, ξ ∨ η, µ) ≥ I(x, ξ, µ) + I(x, η, µ).

Proof : See, [2] and [25].

Lemma 2.5. Let {an}n∈N} be a sequence of real numbers such that is positive and

sub additive. Then limn→∞
an
n

exists and equal to infn∈N
an
n
.

Proof : See, the Theorem 4-9 of [26]. 2

Theorem 2.6. If ξ is a finite measurable partition of X with I(x, ξ, µ) < ∞, for

each x ∈ X then, limn→∞
1

n
I(x,∨n−1

i=0 T
−iξ, µ), for each x ∈ X exists and is equal

to infimum.

Proof : See [8].

Definition 2.7. Let ξ is a finite measurable partition of the dynamical system

(X,T ) with I(x, ξ, µ) < ∞, for each x ∈ X, the quantity

I(x, T, µ) = sup
ξ

I(x, T, ξ, µ);

is called the information function of dynamical system (X,T ). Where the super-

mum is taken over all finite measurable partitions of X with the finite information

functions.

In the following we recall some classical results that we need in the sequel.

Theorem 2.8. (Choquet) Suppose that Y is a compact convex metrisable subset

of a locally covex space E, and x0 ∈ Y . Then, there exists a probability measure

τ on Y which represents x0 and is supported by the extreme points of Y , that is,

Φ(x0) =
∫
Y
Φdτ for every continuous linear functional Φ on E, and τ(ext(Y )) = 1.

Proof : See [21]. 2

Let µ ∈ M(X,T ) and f : X → R be a bounded measurable function. As we

know that E(X,T ) equals the extreme points of M(X,T ), applying the Choquets

Theorem for E = M(X), the space of finite regular Borel measures on X, and Y =

M(X,T ), and using the linear functional Φ : M(X) → R given by Φ(µ) =
∫
X
fdµ,

we have the following Corollary:
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Corollary 2.9. Suppose that T : X → X is a continuous map on the compact

metric space X. Then, for each µ ∈ M(X,T ), there is a unique measure τ on the

Borel subsets of the compact metrsable space M(X,T ), such that τ(E(X,T )) = 1

and ∫
X

f(x)dµ(x) =

∫
E(X,T )

(

∫
X

f(x)dm(x))dτ(m)

for every bounded measurable function f : X → R.

Under the assumptions of Corollary 2.9, we write µ =
∫
E(X,T )

mdτ(m), called

the ergodic decomposition of µ.

3. Relative information functional of relative dynamical systems

This section is presenting the notion of information from the view point of differ-

ent observers which describe a relative perspective of complexity and uncertainty

in fuzzy systems. In this paper we assume that X is a compact metric space, and

Θ is a one dimentional observer of X [14], that is, Θ : X → [0, 1] is a fuzzy set

[29]. Moreover we assume that T : X → X is a continuous map. In this case

we say that (X,T,Θ) is a relative dynamical system. Infact if E ⊆ X, then the

relative probability measure of E with respect to an observer Θ is the fuzzy set

mT
Θ(E) : X → [0, 1] defined by

mT
Θ(E)(x) = lim sup

n→∞

1

n

n−1∑
i=0

χE(T
i(x))Θ(T i(x)).

Where χE is the characteristic function of E [14].

Theorem 3.1. Let (X,β,m) be a probability space, and let Θ : X → [0, 1] be the

characteristic function χX . Moreover let T : X → X be an ergodic map, then for

each x ∈ X, mT
Θ(E)(x) is almost everywhere equal to m(E) where E ∈ β.

Proof : See [15]. 2

So relative probability measure is an extension of the notion of probability measure.

In the rest of this paper mx is a relative measure with respect to an observer Θ at

x ∈ X, i.e. mx(E) = mT
Θ(E)(x) for any E ⊆ X.
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Definition 3.2. Suppose that T : X → X is a continuous map on the topological

space X,x ∈ X and A a Borel subset of X. Then

mx(A) = lim sup
n→∞

1

n

n−1∑
i=0

χA(T
i(x))Θ(T i(x)).

Now, let x ∈ X and ξ = {A1, A2, ..., An} and η = {B1, B2, ..., Bm} be finite Borel

partitions of X. We define

ρΘ(x, T, ξ) := −
n∑

i=1

χAi(x) logmx(Ai);

and

ρΘ(x, T, ξ|η) := −
∑
i,j

χ(Ai∩Bj)(x) log
mx(Ai ∩Bj)

mx(Bj)
.

(We assume that log 0 = −∞ and 0×∞ = 0).

Note that the quantity ρΘ(x, T, ξ|η) is the conditional version of ρΘ(x, T, ξ). It

is clear ρΘ(x, T, ξ) ≥ 0.

Theorem 3.3. Suppose that T : X → X is a continuous map on the topological

space X,x ∈ X and ξ, η, ζ are finite Borel partitions and x ∈ X then

(i) ρΘ(x, T, ξ ∨ η|ζ) = ρΘ(x, T, ξ|ζ) + ρΘ(x, T, η|ξ ∨ ζ);

(ii) ρΘ(x, T, ξ ∨ η) = ρΘ(x, T, ξ) + ρΘ(x, T, η|ξ);
(iii) If ξ ≺ η then ρΘ(x, T, ξ|ζ) ≤ ρΘ(x, T, η|ζ);
(iv) If ξ ≺ η then ρΘ(x, T, ξ) ≤ ρΘ(x, T, η).

Proof : Let ξ = {A1, A2, ..., An}, η = {B1, B2, ..., Bm}, ζ = {C1, C2, ..., Ck} be

finite Borel partiotions of X and assume, without loss of generality, that all sets

have the property that mx(A) ̸= 0.

(i) By definition we have

ρΘ(x, T, ξ ∨ η|ζ) = −
∑
i,j,k

χ(Ai∩Bj∩Ck)(x) log
mx(Ai ∩Bj ∩ Ck)

mx(Ck)
.

But we may write

mx(Ai ∩Bj ∩ Ck)

mx(Ck)
=

mx(Ai ∩Bj ∩ Ck)

mx(Ai ∩ Ck)
.
mx(Ai ∩ Ck)

mx(Ck)
,
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unless mx(Ai∩Ck) = 0, in latter case the left hand side is zero and we need

not consider it; therefore

ρΘ(x, T, ξ ∨ η|ζ) = −
∑
i,j,k

χ(Ai∩Bj∩Ck)(x) log
mx(Ai ∩ Ck)

mx(Ck)
−

∑
i,j,k

χ(Ai∩Bj∩Ck) log
mx(Ai ∩Bj ∩ Ck)

mx(Ai ∩ Ck)

= −
∑
i,j,k

χ(Ai∩Bj∩Ck) log
mx(Ai ∩ Ck)

mx(Ck)
+ ρΘ(x, T, η|ξ ∨ ζ) 3.1

But we have ∑
j

χ(Ai∩Bj∩Ck)(x) = χ(Ai∩Ck)

Now multiplying both sides by − log
mx(Ai ∩ Ck)

mx(Ck)
and summing over i and

k we will obtain

−
∑
i,j,k

χ(Ai∩Bj∩Ck)(x) log
mx(Ai ∩ Ck)

mx(Ck)
= ρΘ(x, T, ξ|ζ). 3.2

Combining 3.1 and 3.2 we will have

ρΘ(x, T, ξ ∨ η|ζ) = ρΘ(x, T, ξ|ζ) + ρΘ(x, T, η|ξ ∨ ζ).

(ii) We can write

mx(Ai ∩Bj) =
mx(Ai ∩Bj)

mx(Ai)
.mx(Ai).

So we have

ρΘ(x, T, ξ ∨ η) = −
∑
i,j

χ(Ai∩Bj)(x) log
mx(Ai ∩Bj)

mx(Ai)
−

∑
i,j

χ(Ai∩Bj)(x) logmx(Ai)

= −
∑
i,j

χ(Ai∩Bj)(x) logmx(Ai) + ρΘ(x, T, η|ξ)

= ρΘ(x, T, ξ) + ρΘ(x, T, η|ξ).

(iii) By (i) we have

ρΘ(x, T, η|ζ) = ρΘ(x, T, ξ ∨ η|ζ)

= ρΘ(x, T, ξ|ζ) + ρΘ(x, T, η|ξ ∨ ζ)

≥ ρΘ(x, T, ξ|ζ).

(iv) It follows from (ii) and (iii).

2
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Definition 3.4. Suppose that T : X → X is a continuous map on the topological

space X,x ∈ X and ξ be a finite Borel partition of X. The map IΘ(., T, ξ) : X →
[0,∞] is defined as

IΘ(x, T, ξ) = lim sup
l→∞

1

l
ρΘ(x, T,∨l−1

i=0T
−iξ).

Theorem 3.5. Let ξ be a finite partition of X. Then for every k ∈ N,

(i) If ξ ≺ η then IΘ(x, T, ξ) ≤ IΘ(x, T, η);

(ii) IΘ(x, T, ξ) = IΘ(x, T,∨k
j=0T

−jξ).

Proof :

(i) If ξ ≺ η then ∨n−1
j=0 T

−jξ ≺ ∨n−1
j=0 T

−jη for all n ≥ 1. This easily leads to the

result.

(ii) We obtain immediately

IΘ(x, T,∨k
j=0T

−jξ) = lim sup
n→∞

1

n
ρΘ(x, T,∨n−1

i=0 T
−i(∨k

j=0T
−jξ))

= lim sup
n→∞

1

n
ρΘ(x, T,∨n+k−1

t=0 T−tξ)

= lim sup
p→∞

p

p− k
.
1

p
ρΘ(x, T,∨p−1

t=0T
−tξ)

= IΘ(x, T, ξ).

2

Definition 3.6. Let T : X → X is a continuous map on the topological space X.

Then a partition ξ of X is called a relative generator of T if there exists an integer

k > 0 such that

η ≺ ∨k
i=0T

−iξ

for every partition η of X.

Theorem 3.7. Let ξ be a relative generator of T then IΘ(x, T, η) ≤ IΘ(x, T, ξ), for

every partition η of X.

Proof : Since ξ is a relative generator of T , then for partition η, there exists an

integer k > 0 such that

η ≺ ∨k
i=0T

−iξ.

Hence

IΘ(x, T, η) ≤ IΘ(x, T,∨k
i=0T

−iξ) = IΘ(x, T, ξ).
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2

Definition 3.8. Suppose that T : X → X is a continuous map on the topological

space X,x ∈ X and ξ be a finite Borel partition of X. We define the relaive

information of T at x by

IΘ(x, T,mx) = sup
ξ

IΘ(x, T, ξ).

Theorem 3.9. Let ξ be a relative generator of T then IΘ(x, T, ξ) = IΘ(x, T,mx).

Proof : Theorem 3.7 implies that IΘ(x, T, η) ≤ IΘ(x, T, ξ) for each partition η of

X. So supη IΘ(x, T, η) = IΘ(x, T, ξ). Thus IΘ(x, T, ξ) = IΘ(x, T,mx). 2

In the following theorem, we extract information function for ergodic dynamical

systems from the relative information of T as a special case.

Theorem 3.10. Suppose that T : X → X is a continuous map on the compact

metric space X. If Θ : X → [0, 1] is the characteristic function χX , then for all

x ∈ X we have,

IΘ(x, T,mx) = I(x, T,m).

Proof : Since m ∈ E(X,T ), for each Borel set A and x ∈ X, applying Theorem

3.1 we have mx(A) = m(A). So by replacing mx by m we have,

IΘ(x, T,mx) = I(x, T,m).

2

Definition 3.11. Suppose that T : X → X is a continuous map on the compact

metric space X, and ξ be a relative generator for the relative dynamical system

(X,Θ, T ). Let µ ∈ M(X,T ). The relative information functional of T ( with

respect to µ), ITΘ(., µ, ξ) : C(X) → R, is defined as

ITΘ(f, µ, ξ) =

∫
X

f(x)IΘ(x, T, ξ)dµ(x)

for all f ∈ C(X) (again 0×∞ := 0).

In the following, we will prove the independence of weighted information func-

tional from the selection of the generator.
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Theorem 3.12. Definition 3.11 is independent of the choice of relative generator

i.e if ξ and η are two relative generators of T then,

ITΘ(f, µ, ξ) = ITΘ(f, µ, η).

for all f ∈ C(X).

Proof : Let ξ, η be relative generators of T . Then by Theorem 2.11 we have

IΘ(x, T, ξ) = IΘ(T,mx) = IΘ(x, T, η).

So, if f ∈ C(X), then,

f(x)IΘ(x, T, ξ) = f(x)IΘ(x, T, η)

for all x ∈ X. Therefore ITΘ(f, µ, ξ) = ITΘ(f, µ, η). 2

Remark 3.13. By Theorem 3.12, we conclude that the definition of relative infor-

mation functional is independent of the selection of generators. Therefore, given

any invariant measure µ and any relative generator ξ , we have the unique relative

information functional. So, we can write ITΘ(f, µ) for I
T
Θ(f, µ, ξ) without confusion.

Definition 3.14. we say that two relative dynamical systems (X,T1,Θ1) and (Y, T2,Θ2)

are isomorphic if there exists a homeomorphism φ : X → Y such that φoT1 = T2oφ

and Θ2(T2oφ(x)) = Θ1(T1(x)) for all x ∈ X.

Theorem 3.15. Suppose that T : X → X is a continuous map on the compact

metric space X. Then

(i) Given any µ ∈ M(X,T ), the relative information functional f → ITΘ(f, µ)

is linear.

(ii) Given any f ∈ C(X), the map µ → ITΘ(f, µ) is affine.

(iii) If two relative dynamical systems (X,T1,Θ1) and (Y, T2,Θ2) are isomor-

phic, and µ ∈ M(X,T ), then,

IT1

Θ1
(f, µ) = IT2

Θ2
(fφ−1, µφ−1)

for all f ∈ C(X).

Proof :

(i) and (ii) are trivial.
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(iii) For x ∈ X and the Borel setA ⊂ X, we havemT1

Θ (A)(x) = mT2

Θ (φ(A))(φ(x)).

Therefore, ρΘ(x, T1, ξ) = ρΘ(φ(x), T2, φ(ξ)) for any finite Borel partition ξ.

By definition of IΘ(., T, ξ) we have IΘ1(., T1, ξ) = IΘ2(., T2, φ(ξ))oφ. Note

that φ(ξ) = {φ(A);A ∈ ξ}. Let µ ∈ M(X,T1), and f ∈ C(X). Then,

IT1

Θ1
(f, µ) =

∫
X

f(x)IΘ1(x, T1, ξ)dµ(x)

=

∫
X

f(x)IΘ2(φ(x), T2, φ(ξ))dµ(x)

=

∫
Y

f(φ−1(x))IΘ2
(x, T2, φ(ξ))d(µφ

−1)(x)

= IT2

Θ2
(fφ−1, µφ−1).

2

Theorem 3.16. Suppose that T : X → X is a continuous map on the compact met-

ric space X. If µ ∈ M(X,T ) and µ =
∫
E(X,T )

mdτ(m) is the ergodic decomposition

of µ, then,

ITΘ(f, µ) =

∫
E(X,T )

ITΘ(f,m)dτ(m)

for all f ∈ C(X).

Proof : Let ξ be a generator of relative dynamical system (X,Θ, T ). First, let

f ∈ C+(X). Applying Corollary 2.9, we have

ITΘ(f, µ, ξ) =

∫
X

f(x)IΘ(x, T, ξ)dµ(x)

=

∫
E(X,T )

(

∫
X

f(x)IΘ(x, T, ξ)dm(x))dτ(m)

=

∫
E(X,T )

(

∫
X

ITΘ(f,m, ξ)dτ(m).

For f ∈ C(X), write f = f+ − f− where f+, f− ∈ C+(X). 2

Theorem 3.17. Suppose that T : X → X is a continuous map on the compact

metric space X. Moreover let x ∈ X and µ ∈ M(X,T ). Then ,

(i) ITΘ(1, µ) = IΘ(x, T,mx).

(ii) The relative information functional f → ITΘ(f, µ) is a continuous linear

function on C(X), and ∥ITΘ(., µ)∥ = IΘ(x, T,mx).
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Proof : (i) Let ξ be a generator. Let µ ∈ M(X,T ). By Theorem 2.11, we have

IΘ(x, T, ξ) = IΘ(x, T,mx)

for arbitrary x ∈ X. Therefore,

ITΘ(1, µ) =

∫
X

IΘ(T,mx)dµ(x) = IΘ(x, T,mx).

(ii) Let ξ be a relative generator. Let f ∈ C(X), then,

|ITΘ(f, µ)| = |
∫
X

f(x)IΘ(x, T, ξ)dµ(x)| ≤
∫
X

|f(x)|IΘ(x, T,m)dµ(x)

≤ ∥f∥∞
∫
X

IΘ(x, T,m)dµ(x) = ∥f∥∞ITΘ(1, µ) = ∥f∥∞IΘ(x, T,mx)

Terefore, the relative information functional is a continuous function and ∥ITΘ(.,m)∥ ≤
ISΘ(T,mx). The equality holds by (i). 2

4. Conclusions

Constant observers appear in many physical systems. In this paper, we intro-

duced the notion of relative information functional for relative dynamical sytems

on compact metric spaces from the view point of observer Θ. It is a continuous

linear function on C(X) such that its norm equals the relative information of T

at each x ∈ X. We also generalized the invariance of the information function of

a dynamical system , under topological isomorphism, to the relative information

functional.
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