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Abstract    The aim of this study was to determine the effect of marker density, level of heritability, 

number of QTLs, and size of training set on the genomic accuracy over three generations. Thereby, 

a trait was simulated with heritability of 0.10, 0.25 or 0.40. For each animal, a genome with 20 chro-

mosomes, 1 Morgan each, was simulated. Different marker densities (2000, 4000 and 6000 markers) 

and 400 and 600 randomly distributed QTLs were simulated. Marker density, size of training set, and 

heritability level significantly affected the genomic accuracy (P< 0.05). Increasing the marker density 

from 4000 to 6000 did not affect the genomic accuracy, likewise there was no difference between 

genomic accuracy of the first, and second validation sets (generations 8 and 9). The results showed 

that 4000 markers may be appropriate for genomic evaluation, and that the estimated marker effects 

can be used for at least two subsequent generations although the marker effects should be re-esti-

mated for the third generation. 
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Introduction 

Genomic selection was first introduced in 1998 

(Visscher and Haley, 1998), then its methods and prin-

ciples were presented by Meuwissen et al. (2001). Ge-

nomic evaluation is carried out in two steps: (a) estimat-

ing the effect of marker on a particular trait in the train-

ing set (population having phenotypic records); (b) pre-

dicting the genomic breeding values for animals in the 

validation set (population without phenotypic records). 

This method relies on computing genomic estimated 

breeding values (GEBV) using a large number of single 

nucleotide polymorphism (SNP) markers. The accuracy 

of genomic predictions depends on the level of linkage 

disequilibrium (LD) between the markers and QTLs, 

number of animals in the reference population, herita-

bility of the trait, and distribution of QTLs (Hayes et al., 

2009). Marker density panel is one of the most im-

portant factors affecting accuracy of genomic prediction 

(Solberg et al., 2008; Habier et al., 2009; Meuwissen, 

2009; Weigel et al., 2009). In genomic selection, all ge-

netic variance is explained by the markers which are 

scattered in the whole genome. Genomic selection can 

reduce the costs of genetic evaluation and increase ge-

netic improvement by reducing the generation interval 

and increasing the accuracy of selection (Scheffer, 

2006; Hayes et al., 2009). Even though the advancement 

in molecular technology makes it possible to use these  

 high-density SNP markers in genomic selection, the 
high cost of genotyping a large population prevents the 
broader implementation of genomic selection in many 
livestock species including the native cattle breeds. The 
solution is to reduce genomic evaluation costs through 
reducing the number of markers, reducing the number 
of animals that should be genotype (reducing the size of 
the reference population), using the estimated markers 
effects for two or more generations, and finally a com-
bination of the items expressed. The present simulation 
study was carried out to investigate the effect of number 
of markers (2000, 4000, and 6000), level of heritability 
(0.10, 0.25, and 0.40), number of QTLs (400 and 600), 
and size of the training set (1000 and 2000) on the ge-
nomic accuracy over three generations. 

Materials and Methods 

Simulation 

The populations were simulated using the QMSim soft-
ware (Sargolzaei and Schenkel 2009) based on forward-
in-time process. The base population consisted of 1000 
unrelated animals (500 males and 500 females). The in-
dividuals were randomly selected as parents and ran-
domly mated for 1000 discrete generations. Then, the 
population size was gradually decreased from 1000 in-
dividuals in generation 1001 to 300 individuals in gene- 
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ration 2020 to create the linkage disequilibrium (LD) in 

the historical population. The number of individuals of 

both sexes were remained the same and the mating sys-

tem was based on random union of gametes randomly 

sampled from male and female gametes pools. 

In the next step, a population (the expanded population) 

was generated using randomly selected 300 founders 

(150 males and 150 females) from the last generation of 

the historical population. To enlarge the population, 10 

generations were simulated with five offspring per dam 

and an exponential growth of the number of dams. The 

mating system was based on the random union of gam-

etes with no selection. Subsequently, 40 males and 2000 

females from the last generation of the expanded popu-

lation were randomly mated to generate another 10 gen-

erations. Individuals of the training set (1000 and 2000 

individuals) were randomly selected from the 6th and 7th 

generations. The validation set were all individuals from 

the generations eight, nine and ten. 

For each animal, a genome with 20 chromosomes, 1 

Morgan each, was simulated. Three marker density pan-

els (2000, 4000, and 6000 markers) were simulated with 

equal allelic frequency in the first generation of the his-

torical population. The markers were randomly scat-

tered across the genome, and none of the markers di-

rectly affected the trait. A total of 400 and 600 QTLs 

were randomly distributed among the markers. Effects 

at the QTLs were sampled from a gamma distribution 

with shape 0.4.The mutation rate of the markers and 

QTLs was assumed 2.5 × 10-5 per locus per generation 

(Solberg et al., 2008). 

A trait with heritability of 0.10, 0.25 or 0.40 and pheno-

typic variance of 1.0 was simulated. The true breeding 

value (TBV) of each individual was equal to the sum of 

the QTL allele substitution effects, assuming only addi-

tive QTL effects. Phenotypes were generated by adding 

residuals, randomly drawn from a normal distribution 

with mean equal to zero, to the TBVs. For all scenarios, 

10 replicates were simulated. 

Statistical model 

Prediction of marker effects 

The following ridge regression BLUP model which is a 

popular approach for estimating the marker effects in 

genomic evaluations (Meuwissen et al., 2001; Habier et 

al., 2007) was used to estimate SNP effects using a pro-

gram written in the R software (R Development Core 

Team, 2011). 

𝐲 = 𝟏µ +  𝐗`𝐠 + 𝐞 

where, y is the vector of phenotypes values, μ is the 

overall mean, X is the matrix of marker genotypes for  

 each animal (the SNP genotypes were coded as the num-

ber of copies of one SNP allele, i.e. 0, 1 or 2), g is the 

vector of marker effects, and e is a vector of random er-

rors with distribution of N(0, σe
2). No additional infor-

mation, such as marker location, polygenic effects, or 

pedigree was used in the model.The mixed model equa-

tion used to estimate the markers effects was: 

 

[
𝟏𝐧
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` 𝐗

𝐗`𝟏𝐧       𝐗`𝐗 + 𝐈𝛌
] [
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�̂�
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` 𝐲

𝐗`𝐲
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where, X is the matrix of marker genotypes for each an-

imal, I is an identity matrix (total number of marker × 

total number of markers), λ is the ridge regression factor 

= 
σe

2

σg
2 , σe

2 is the residual variance, σg
2 is variance common 

to each marker effect = 
σa

2

2 ∑ piqi
n
i=1

 and n is the total num-

ber of markers (Meuwissen et al., 2001; Habier et al., 

2007).  

Once the marker effects were estimated, the GEBV was 

computed for the animals in the validation set as: 

𝐆𝐄𝐁𝐕 = 𝐗�̂�, in which, X is the matrix of marker geno-

types for each animal, and �̂� is the vector of estimated 

marker effects. The accuracy of GEBV was calculated 

as the correlation between GEBVs and TBVs. 

The effects of heritability levels, marker density panels, 

and the number of QTLs on the accuracy of genomic 

predictions over three subsequent generations were 

evaluated using PROC GLM, and the average accura-

cies of GEBV were compared using the least squares 

means (LSM) procedure at P<0.05 (SAS, 2003). 

Linkage Disequilibrium 

The linkage disequilibrium (LD) measure r2, square of 

the correlation of alleles at two loci, was used for meas-

uring LD (Hill and Robertson 1968).  

r2 =  
D2

f(A) f(a)  f(B) f(b)
 

where, D = f(AB) − f(A) f(B), and f(AB), f(A), f(a), 

f(B), f(b) are observed frequencies of haplotypes AB 

and of alleles A, a, B, b, respectively. 

Results and Discussion 

On average, 756 (37.8%) of 2000, 1506 (37.7%) of 

4000, and 2260 (37.7%) of 6000 markers were polymor-

phic (MAF > 0.05) in the recent generations, while the 

corresponding values for QTLs were 160.50 (40.1%) 

out of 400 and 241.60 (40.3%) out of 600. 

In this study, the genomic accuracy, the correlation be-

tween TBVs and GEBVs, for different marker densities  
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Table 1. The estimated genomic accuracy (SE) for a training set of 1,000, three marker density panels, and two levels of QTLs 

over three subsequent generations 

Generation 8  9  10 

QTL 400 600  400 600  400 600 

Marker density panels         

2000 34.3(0.78)ab,B 36.7(0.78)a,A  31.3(0.78)bc,B 33.3(0.78)abc,A  30.1(0.78)c,B 31.1(0.78)bc,A 

4000 38.0(0.78)ab,AB 39.3(0.78)a,A  34.8(0.78)bc,AB 35.9(0.78)abc,A  33.0(0.78)c,AB 33.8(0.78)c,A 

6000 39.6(0.78)a,A 40.5(0.78)a,A  37.2(0.78)ab,A 37.0(0.78)ab,A  34.4(0.78)b,A 34.7(0.78)b,A 
Different capital letters indicate significant differences (P < 0.05) within columns. Different small letters indicate significant differences (P < 

0.05) within rows. 

Table 2. The estimated genomic accuracy (SE) for a training set of 2,000, three marker density panels, and two levels of QTLs 

over three subsequent generations 

Generation 8  9  10 

QTL 400 600  400 600  400 600 

Marker density panels         

2000 42.1(0.73)ab,B 43.8(0.73)a,B  39.0(0.73)bc,B 40.4(0.73)abc,B  37.1(0.73)c,B 37.7(0.73)c,B 

4000 46.1(0.73)ab,A 46.8(0.73)a,AB  43.2(0.73)bc,A 43.9(0.73)abc,AB  41.4(0.73)c,A 41.6(0.73)c,A 

6000 48.4(0.73)ab,A 48.7(0.73)a,A  45.0(0.73)bc,A 45.1(0.73)abc,A  42.2(0.73)c,A 42.8(0.73)c,A 
Different capital letters indicate significant differences (P < 0.05) within columns. Different small letters indicate significant differences (P < 

0.05) within rows. 

(2000, 4000 and 6000), different number of QTLs (400 

and 600), different levels of heritability (0.10, 0.25, and 

0.40), and different sizes of training sets (1000 and 

2000), over three subsequent generations were investi-

gated. With increasing size of the training set, from 

1000 to 2,000 individuals (P<0.05), the average ge-

nomic accuracy increased from 35.3 (0.19) to 43.1% 

(0.19) which is in a close agreement with previous re-

ports (Meuwissen et al., 2001; Callus and Veerkamp 

2007). Increasing the number of markers from 2,000 to 

6000 increased the average genomic accuracy from 33.8 

(0.32) to 37.3% (0.32) with a training set of 1000 indi-

viduals, and from 40 (0.30) to 45.4% (0.30) with a tra- 

 ining set of 2000 individuals. Solberg et al. (2008) re-

ported that for population with an effective size of 100, 

training set of 1000 and a heritability of 0.50, the accu-

racy of genomic predictions increased from 0.69 to 0.86 

as marker density increased from 100 to 800 markers 

per Morgan. Although with increasing marker density 

from 2000 to 4000 the accuracy of genomic evaluation 

increased (P<0.05), but increasing marker density from 

4000 to 6000, did not affect the genomic accuracy 

(P≥0.05). 

Increasing the number of QTLs from 400 to 600 in-

creased the average genomic accuracy from 34.7 (0.26) 

to 35.8 % (0.26) with a training set of 1000 individuals,  

Table 3. The estimated genomic accuracy (SE) for a training set of 1,000, three marker density panels, and three levels of 

heritability over three subsequent generations 
Generation  8    9    10  

h2 0.10 0.25 0.40  0.10 0.25 0.40  0.10 0.25 0.40 
Marker 

density 

panels 

           

2000 29.0(0.96)cde,A 36.7(0.96)ab,B 40.7(0.96)a,B  27.4(0.96)de,A 33.8(0.96)bc,B 35.7(0.96)ab,B  26.3(0.96)e,A 32.0(0.96)bcd,B 33.6(0.96)bc,B 

4000 31.6(0.96)de,A 40.3(0.96)ab,AB 44.0(0.96)a,AB  28.9(0.96)ef,A 37.3(0.96)bc,AB 39.9(0.96)ab,AB  26.3(0.96)f,A 34.2(0.96)cd,AB 39.7(0.96)ab,A 

6000 31.6(0.96)d,A 42.6(0.96)ab,A 46.1(0.96)a,A  28.7(0.96)de,A 39.6(0.96)bc,A 43.0(0.96)ab,A  26.3(0.96)e,A 37.5(0.96)c,A 39.9(0.96)bc,A 

Different capital letters indicate significant differences (P < 0.05) within columns. Different small letters indicate significant differences (P < 

0.05) within rows. 

Table 4. The estimated genomic accuracy (SE) for a training set of 2,000, three marker density panels, and three levels of 

heritability over three subsequent generations 
Generation  8    9    10  

h2 0.10 0.25 0.40  0.10 0.25 0.40  0.10 0.25 0.40 
Marker density panels            

2000 36.6(0.9)cde,A 43.5(0.9)b,B 48.7(0.9)a,B  34.4(0.9)de,A 41.0(0.9)bc,B 43.6(0.9)b,B  32.9(0.9)e,A 38.7(0.9)cd,B 40.6(0.9)bc,B 

4000 39.6(0.9)de,A 48.1(0.9)ab,AB 51.7(0.9)a,AB  37.0(0.9)ef,A 46.0(0.9)bc,A 47.6(0.9)abc,AB  34.5(0.9)f,A 43.2(0.9)cd,AB 46.8(0.9)bc,A 

6000 40.2(0.9)d,A 51.3(0.9)ab,A 54.1(0.9)a,A  36.9(0.9)de,A 47.4(0.9)bc,A 50.9(0.9)ab,A  34.8(0.9)e,A 45.4(0.9)c,A 47.5(0.9)bc,A 

Different capital letters indicate significant differences (P < 0.05) within columns. Different small letters indicate significant differences (P < 

0.05) within rows. 
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Table 5. The estimated genomic accuracy (SE) for atraining set of 1,000, two levels of QTLs and three levels of heritability over 

three subsequent generations 

Generation 8  9  10 

QTL 400 600  400 600  400 600 

h2         

0.10 29.2(0.78)ab,C 32.3(0.78)a,B  26.9(0.78)bc,B 29.7(0.78)ab,B  25.3(0.78)c,B 27.3(0.78)bc,B 

0.25 39.2(0.78)a,B 40.5(0.78)a,A  36.7(0.78)ab,A 37.1(0.78)ab,A  34.5(0.78)b,A 34.6(0.78)b,A 

0.40 43.5(0.78)ab,A 43.7(0.78)a,A  39.7(0.78)bc,A 39.5(0.78)c,A  37.7(0.78)c,A 37.7(0.78)c,A 
Different capital letters indicate significant differences (P < 0.05) within columns. Different small letters indicate significant differences (P < 

0.05) within rows. 

and from 42.7 (0.24) to 43.4% (0.24) with a training set 

of 2000 individuals. According to Zhang et al. (2011),  

genomic accuracy increased slightly as the number of 

QTLs increased. There was a significant difference be-

tween genomic accuracies of the eighth and tenth gen-

erations (P< 0.05), but no differences were recorded be-

tween the eighth and ninth generation, which is in close 

agreement with previous studies (Meuwissen et al., 

2001; Habier et al., 2007). Increasing the level of herit-

ability from 0.10 to 0.40 increased the average genomic 

accuracy from 36.3 (0.30) to 47.9% (0.30) with a train-

ing set of 2000 individuals, and from 28.5 (0.32) to 

40.3% (0.32) with a training set of 1000 individuals. For 

heritability values of 0.10 and 0.50, genomic accuracies 

of 48% and 67% (Callus et al., 2008) and 40% and 70% 

(Saatchi et al., 2010) were reported. Hayes et al. (2009) 

reported that with traits of low heritability, more pheno-

typic records in the training setwere needed to obtain a 

certain level of genomic accuracy. The least squares 

means of genomic accuracy in different marker panels 

and different numbers of QTLs over three generations 

are presented in Table 1 (training set of 1000 individu-

als) and Table 2 (training set of 2000 individuals). With 

the training set of 2000, and for both QTL densities, in-

creasing the marker number from 2000 to 6000, in-

creased the genomic accuracy, but not with the training 

set of 1000 and 600 QTLs (P ≥ 0.05). Goddard (2009) 

reported that with a large number of QTLs, each one 

having a small effect, a large number of individuals in 

the training set are required to estimate the marker ef-

fects with high accuracy. 

The least squares means of the genomic accuracy under  

 different marker density panels and heritability levels, 

and over three generations are presented in Table 3 

(with a training set of 1000 individuals) and Table 4 

(with a training set of 2000 individuals). Under all situ-

ations, the average genomic accuracy increased when 

heritability values increased from 0.10 to 0.40, (P< 

0.05). With heritability values of 0.25 and 0.40, but not 

0.10, increasing the number of markers from 2000 to 

6000, significantly increased the average genomic accu-

racy. The least squares means of the genomic accuracy 

for different QTL number, different heritability level, 

and over three generations are presented in Table 5 

(training set of 1000 individuals) and Table 6 (training 

set of 2000 individuals). Under different QTL densities, 

increasing the heritability increased the average ge-

nomic accuracy (P<0.05) which is in a close agreement 

with Zhang et al. (2011). 

The results of this study showed that increasing the 

marker density to 4000, improved the genomic accuracy 

for traits with high and moderate heritability, but not for 

low heritable traits. On the other hand, there was no dif-

ference between the genomic accuracy estimates of the 

first and second validation sets (generations eight and 

nine). Therefore, it seems that 4000 markers maybe suf-

ficient for genomic evaluation where the estimated 

marker effect scan be used for at least two subsequent 

generations; however, the marker effects needs to be re-

estimated for the third generation. 
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 ژنومیک در سه نسل متوالی پذیری برصحت انتخابوراثتو اثر تراکم نشانگر 
 . ضمیریج.م و دادپسند .، م*آتشی .ـگرگانی فیروزجاه، ه .ن

 

 hadiatashi@gmail.comنویسنده مسئول، پست الکترونیک: 

 

ی پذیری، افزایش اندازههیی متفیوت نشییین،ر، سییمتف متفیوت ورار هدف این پژوهش، بررسییت ثیر ر ثرا  چکیده    

یک صیییف  بی  .پت بتددرارزییبت ژنتم ک در سیییس نپییی  پت، بر صییی   QTLهیی متفیوت جمع ی   یندیدا، ثرا  

)هر  مترگین 51 ی رومتزمت و بی اندازه 51ژنتم برای هر ح تان یک . بد سیزیدرصید بی س 01و  52، 01پذیری ورار 

، یک ثرث ببسهی ی ب ن آنفیصلسو  0111و  0111، 5111 هی در ژنتم،نشین،ر بمیربد. سیزی  رومتزم یک مترگین( بی س

ثتزیع  در طتل ژنتم ثصیدفت یگتنسس س بدر نظر گرفتس بد  011و  011 هی،QTLبتد. بیمیر مترگین سیینتت 33/1و  2/1

 هییی جمع   مرجع بر م ین، ن  مترین مربعیت صیی   برآورد ارز پذیری و اندازه. ثرا   نشییین،رهی، ورار نددبیی

هیی این پژوهش نشییین داد  س صیی   انتدی  در حیس  اسییتفیده از تس. ییف(P < 0.05)اصیییحت ژنتم ک ثیر ر دابییت د 

دار بی یکدی،ر ( ثفیوت مع ت9و  8هیی هیی اول و دوم جمع    یندیدا )نپ نشیین،ر و همن  ن در نپی  0111یی  0111

نپ  )جمع      دو هیی اصییحت ژنتم ک برای دسیی نشیین،ر، برای برآورد ارز  0111ثتان از ندابیت د. ب یبراین مت

  یندیدا( استفیده  رد، امی برای نپ  ستم جمع    یندیدا، ارر نشین،رهی بیید دوبیره برآورد بتد.

 


