
PROCESS CONTROL USING ASSUMED FUZZY TEST AND FUZZY ACCEPTANCE

REGION

M. KHADEMI AND V. AMIRZADEH

DEPARTMENT OF STATISTICS, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE,

SHAHID BAHONAR UNIVERSITY OF KERMAN, IRAN

MAHDIYEH KHADEMI@YAHOO.COM, V AMIRZADEH@UK.AC.IR

(Received: 22 November 2014, Accepted: 23 February 2015)

Abstract. There are many situations for statistical process in which we have both random and vague

information. When uncertainty is due to fuzziness of information, fuzzy statistical control charts play an

important role in the monitoring process, because they simultaneously deal with both kinds of uncertainty.

Dealing with fuzzy characteristics using classical methods may cause the loss of information and influence

in process deciding making. In this paper, we proposed a decision-making process based on fuzzy rejection

regions and fuzzy statistical tests for crisp observation. With both methods, we define the degree of depen-

dence to acceptance region for decision in the fuzzy regions and process fuzzy. A numeric example illustrates

the performance of the method and interprets the results.
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1. Introduction

Hypotheses testing methods are extensively used in various statistical quality control. These methods may

be used to infer whether there is conformity between process parameters and their specified values and/or

whether they can help to modify the process to achieve a desired value. Faraz et al. in their article presented

an application of fuzzy random variables in control charts and the structure fuzzy of Shewhart control charts

[4,5,6]. In this regard, Zarandi et al. [21], suggested a hybrid approach based on fuzzy sampling rules. Kaya

and Kahraman[11], Glbay and Kahraman [7,8], used of fuzzy set theory for the construction of fuzzy control
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charts. Wang and Raz [17,18], proposed two fuzzy approaches, called the membership function approach

and the fuzzy-probabilistic approach for monitoring the process average. Using defuzzification methods,

fuzzy sample data are first converted into real-valued sample data, then the center line and control limits

are established as in e traditional Shewhart control charts.

Let X1, X2, . . . , Xn be a random sample observed from a normal distribution N(µ, σ2), where σ is known.

The objective is to test the hypotheses H◦ : µ = µ◦, againstH1 : µ ̸= µ◦. If the null hypotheses is true, the

statistic Z = X−µ◦
σ√
n

, has a standard normal distribution N(0, 1).

Therefore, the rejection region with significant level α is R = {Z | |Z| ≥ Zα}, where P (|Z| ≥ Zα) = α[1].

2. Fuzzy Hypotheses

Sometimes, the nature of such hypotheses is such that it cannot be formulated in a precise terms. In this

case the theory of fuzzy sets can be used in hypotheses testing.

In a hypotheses testing problem, a hypotheses of the form “H : θ is as Mθ” is a fuzzy hypotheses where

Mθ is a membership function on the parameter space of θ.

For example, consider a study on the diameter of a factory manufacturing washers. If the mean diameter

of washers conforms to the standard value µ◦, we have in the classical case H◦ : µ = µ◦ against H1 : µ ̸= µ◦.

But it is clear that even if the average diameter of washers slightly differs from µ◦ the washers are still

acceptable and the production line is not considered non-standard. Hence, it is natural that if µ (mean

actual and unknown for diameter washers) is almost µ◦ the factory products are accepted and otherwise

they are rejected. Thus, the true hypotheses is in this case are

H̃◦ : µ is near to µ◦

H̃1 : µ is far from µ◦.

Now, H◦ and H1 hypotheses can be modeled as fuzzy sets. We write the fuzzy null as H̃◦ : µ = µ̃◦, where,

µ̃◦ is a fuzzy number. For simplicity we assume that µ̃◦ is a triangular fuzzy number with α as left-width

and right width [14,16].

3. Crisp rejection region and fuzzy test statistical

We introduce here a fuzzy test statistic which is preferred to the z-test statistic. In this regard we use

hybrid numbers defined by Kaufman [10]. Hybrid numbers are a sum of random numbers and fuzzy numbers.

We know that X◦ = X − µ◦, is a random number, which under H◦ has distribution of N(0, σ2/n). Now the

number X̃H = X◦ + µ̃◦, which is the sum of the random number X◦ and the fuzzy number µ̃◦, and hence,

X̃H is a hybrid number. In fact, X̃H is a combination of fuzzy null hypotheses with procise observation.
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Kato et al. [9], using the hybrid number(X̃H), defined the statistic Z̃H for testing the fuzzy hypotheses as

follows:

Z̃H =
X̃H − µ◦

σ√
n

=
X◦ + µ̃◦ − µ◦

σ√
n

=
X◦
σ√
n

+
µ̃◦ − µ◦

σ√
n

= Z + (−η, 0, η),

where Z is the standard normal statistic, and (−η, 0, η) is a triangular fuzzy number with η = α
( σ√

n
) .

Therefore, Z̃H is a hybrid number which may be used as a substitute for Z when using a fuzzy hypotheses

test. To decide about the process, the value of Z̃H is compared with a crisp rejection region (Figure 2). If

more than half of the area of Z̃H is in the rejection region then the null hypotheses is rejected, otherwise the

null hypotheses is accepted.

4. Fuzzy rejection region and fuzzy test statistic

When dealing with fuzzy characteristics by the classical time series method, it is possible that some

information is lost. In this paper we test fuzzy hypotheses using fuzzy rejection regions and fuzzy statistics.
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We define a fuzzy distance by a triangular fuzzy number, so that it is possible to use a fuzzy rejection

region. In Figure 3, R̃(Z) represents the fuzzy rejection region.

The membership function of the fuzzy rejection region is defined as follows:

MR̃(Z) =


−Zα+η−Z

η , −Zα ≤ Z ≤ −Zα + η,

0, −Zα + η ≤ Z ≤ Zα − η,
Z−Zα+η

η , Zα − η ≤ Z ≤ Zα,

1, (Z < −Zα) ∨ (Z > Zα).

Here, decision for process depends on the degree that Z̃H is in the fuzzy rejection region[4].

We may define this degree in two ways.

First method: In this method, the decision-making for process depends on the area of the statistic Z̃H

which is situated in the fuzzy rejection region. In Figure 4, the hatched region is the monitored area.

The degree of dependence on the rejection region is:

d1 =

∫
min(MR̃(Z),MZ̃(Z))dZ∫

MZ̃(Z)dZ
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If the Z̃H statistic is completely in the rejection region, then the degree of dependence is 1 (d1 = 1) and

the null hypotheses is rejected. If Z̃H is covered completely by the acceptance region, then the degree of

dependence is zero d1 = 0) resulting in the acceptance of the null hypotheses. When the amount of degree

of dependence to fuzzy rejection region is between zero and one (0 < d1 < 1), the null hypotheses is neither

accepted nor rejected. The decision will depend on the amount of degree of dependence on the rejection

region and a number β1, which is a pre-determined either by a standard or by the quality control inspector.

Second method : In the second method, the quantity of degree of dependence on rejection region d2,

which is defined as the ratio of the length of the interval of statistic Z̃H located in fuzzy rejection region

to the total length of the statistic. In figure 5, this is the ratio of AB to AC. If this value is equal to one,

then the null hypotheses is rejected, and if the value is equal to zero, then the null hypotheses is accepted.

If the value of this ratio is between zero and one, the decision will be with quality control inspector who

will compare the degree of dependence on the rejection region with a number β2, which is a pre-determined

either by a standard or by quality control inspector. If the degree of dependence on the rejection region is

grater than β2, then the null hypotheses is rejected and the process is considered “rather out of control”

and if the expected value is less than β2 then the null hypotheses is accepted, and the process is considered

“rather in control”. We have:

MR̃(Z) =



0, (Z − η ≥ −Zα + η) ∧ (Z + η ≤ Zα − η),

1− Z+Zα

2η , (Z − η < −Zα + η) ∧ (−Zα + η < Z + η < Zα + η),

1− −Z+Zα

2η , (Z − η > −Zα + η) ∧ (Z + η > Zα − η),

2− Zα

η , (Z − η < −Zα + η) ∧ (Z + η > Zα − η),

1, O.W.

5. A numerical Example

A sample of four units we taken on each of 20 consecutive days from a manufacturing process. The data

is shown in table 1. If we know that the process follows a normal distribution with 8, and the process is in

control if the mean is about 100, we have:
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{
H̃◦ : µ = 1̃00,

H̃◦ : µ ̸= 1̃00.

If η = 1 and Zα = 3, then the fuzzy mean is:

µ̃◦ = (µ◦ − η
σ√
n
, µ◦, µ◦ + η

σ√
n
) = (96, 100, 104)

In the fuzzy test comparison methods, d1 is compared with β1 = 0.6 and the d2 with β2 = 0.5. If d1 is less

than 0.6, then the process is pretty much in control, and if grater than 0.6, then the process is rather out of

control. Also, when d2 is less than 0.5 then the process is rather in control and the process is rather out of

control if grater than 0.5. The value for d1 and d2 are displayed in Table 2.

Table 1. Data related to 20 samples from the process

Sample X1 X2 X3 X4

1 93.335 100.317 104.281 105.738

2 96.408 102.725 101.664 109.418

3 100.205 103.556 105.408 106.729

4 94.766 98.873 107.352 91.486

5 106.503 100.479 109.322 92.303

6 98.124 83.141 101.652 104.669

7 108.023 100.272 101.425 96.77

8 113.747 99.549 93.468 99.297

9 97.191 106.073 81.224 109.464

10 94.439 105.869 105.714 111.429

11 98.66 97.632 98.984 86.384

12 109.35 89.921 109.781 110.869

13 93.171 89.032 91.75 98.541

14 115.566 114.463 107.644 99.217

15 108.043 117.346 98.128 113.902

16 108.93 117.74 99.134 114.55

17 107.417 109.925 113.74 114.752

18 120.711 105.88 111.711 108.227

19 102.164 104.814 123.525 121.066

20 98.791 121.621 120.281 120.758
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Table 2. Results obtained from sampling

Sample Comparison of Z̃H with crisp region d1 d2 Comparison of Z̃H with fuzzy region

1 In control 1 1 In control

2 In control 1 1 In control

3 In control 1 1 In control

4 In control 1 1 In control

5 In control 1 1 In control

6 In control 1 1 In control

7 In control 1 1 In control

8 In control 1 1 In control

9 In control 1 1 In control

10 In control 0.998 0.955 Rather in control

11 In control 0.995 0.927 Rather in control

12 In control 0.985 0.877 Rather in control

13 In control 0.871 0.640 Rather in control

14 In control 0.574 0.347 Rather out of control

15 In control 0.552 0.331 Rather out of control

16 In control 0.421 0.239 Rather out of control

17 In control 0.131 0.068 Rather out of control

18 In control 0.090 0.046 Rather out of control

19 Out of control 0 0 Out of control

20 Out of control 0 0 Out of control

6. Conclusion

According to the results in Table 2, we see that in comparison method of fuzzy Z̃H test statistic with fuzzy

acceptance region in comparison with defuzziffication acceptance region the level of degree of dependence

to the acceptance region is precisely seen. And conclusion about the process based on this method; in

addition to result in control and out of control, it has two results rather in control and approximately out of

control. From the fourteenth sample, there are alarm signs but in the defuzziffication acceptance region in

the nineteenth sample, we know that the process is out of control. Based on this method, the comparison of

fuzzy test statistic with fuzzy acceptance region will be accurately concluded to the process. Of course, in

the method of fuzzy test statistic comparison with fuzzy acceptance region two methods have been proposed.
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Where, in the first method the value of degree of dependence is more accurately calculated than in the second

method. But, the calculation of degree of dependence in the second method is easier than the first method.
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