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1. Preliminaries, Background and Notations

In functional analysis, the spectrum of an operator generalizes the notion of

eigenvalues for matrices. The spectrum of an operator over a Banach space is par-

titioned into three parts, which are the point spectrum, the continuous spectrum

and the residual spectrum. The calculation of three parts of the spectrum of an

operator is called calculating the fine spectrum of the operator.
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Several authors have studied the spectrum and fine spectrum of linear operators

defined by some particular limitation matrices over some sequence spaces. We in-

troduce knowledge in the existing literature concerning the spectrum and the fine

spectrum. The fine spectrum of the Cesaro operator on the sequence space `p for

(1 < p < ∞) has been studied by Gonzalez [11]. Also, Wenger [18] examined the

fine spectrum of the integer power of the Cesaro operator over c, and Rhoades [16]

generalized this result to the weighted mean methods. Reade [15] worked the spec-

trum of the Cesaro operator over the sequence space c0. Okutoyi [14] computed the

spectrum of the Cesaro operator over the sequence space bv. The fine spectrum of

the Rhally operators on the sequence spaces c0 and c is studied by Yildirim [20].

The fine spectra of the Cesaro operator over the sequence spaces c0 and bvp have

determined by Akhmedov and Basar [1, 4]. Akhmedov and Basar [2, 3] have studied

the fine spectrum of the difference operator ∆ over the sequence spaces `p, and

bvp, where (1 ≤ p < ∞). The fine spectrum of the Zweier matrix as an operator

over the sequence spaces `1 and bv1 have been examined by Altay and Karakus [6].

Altay and Basar [5, 9] have determined the fine spectrum of the difference operator

∆ over the sequence spaces c0, c and `p, where (0 < p < 1). The fine spectrum

of the difference operator ∆ over the sequence spaces `1 and bv is investigated by

Kayaduman and Furkan [12]. Altun and Karakaya [7, 8] has been studied the fine

spectra of Lacunary matrices and fine spectra of upper triangular double-band ma-

trices. recently, Srivastava and Kumar [17] has been examined the fine spectrum of

the generalized difference operator ∆v over the sequence space c0.

In this work, our purpose is to determine the fine spectra of the generalized for-

ward difference operator ∆uv as an operator over the sequence space c0.

By w, we denote the space of all real or complex valued sequences. Any vector

subspace of w is called a sequence space. Let µ and ν be two sequence spaces and

A = (an,k) be an infinite matrix operator of real or complex numbers an,k, where

n, k ∈ N = {0, 1, 2, . . .}. We say that A defines a matrix mapping from µ into ν

and denote it by A : µ −→ ν, if for every sequence x =
(
xk

) ∈ µ the sequence

Ax =
(
(Ax)n

)
, the A-transform of x, is in ν, where (Ax)n =

∞∑
k=0

an,kxk. We say



FINE SPECTRA OF ∆uv OVER THE SPACE c0 — JMMRC VOL. 1, NUMBER 1 (2012) 3

that A ∈ (µ, ν) if and only if Ax ∈ ν whenever x ∈ µ.

Let X and Y be Banach spaces and T : X −→ Y, also be a bounded linear

operator. By R(T ), we denote the range of T , i.e.,

R(T ) = {y ∈ Y : y = Tx, x ∈ X}.

By B(X), we denote the set of all bounded linear operator on X into itself. If

X is any Banach space and T ∈ B(X) then the adjoint T ∗ of T is a bounded linear

operator on the dual X∗ of X defined by (T ∗ψ)(x) = ψ(Tx) for all ψ ∈ X∗ and

x ∈ X with ‖T‖ = ‖T ∗‖.
Let X 6= ∅ be a complex normed space and T : D(T ) −→ X, also be a bounded

linear operator with domain D ⊆ X. With T , we associate the operator Tλ = T−λI,

where λ is a complex number and I is the identity operator on D(T ), if Tλ has an

inverse, which is linear, we denote it by T−1
λ , that is

T−1
λ = (T − λI)−1

and call it the resolvent operator of T .

The name resolvent is appropriate, since T−1
λ helps to solve the equation Tλx = y.

Thus, T−1
λ exists provided the solution x = T−1

λ y . More important, the investiga-

tion of properties of T−1
λ will be basic for an understanding of the operator T itself.

Naturally, many properties of Tλ and T−1
λ (when it exists) depend on λ, and spec-

tral theory is concerned with those properties. For instance, we shall be interested

in the set of all λ in the complex plane such that T−1
λ exists. Boundedness of T−1

λ

is another property that will be essential. Also we shall ask for what λ the domain

of T−1
λ is dense in X, to name just a few aspects. For our investigation of T , Tλ

and T−1
λ , we shall need some basic concepts in spectral theory which are given as

follows(see [10, pp. 370-371]):

Definition 1.1. Let X 6= ∅ be a complex normed space and T : D(T ) −→ X, be

a linear operator with domain D ⊆ X. A regular value of T is a complex number λ

such that

(R1) T−1
λ exists,

(R2) T−1
λ is bounded,
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(R3) T−1
λ is defined on a set which is dense in X.

The resolvent set ρ(T, X) of T is the set of all regular value λ of T . Its comple-

ment σ(T,X) = C − ρ(T, X) in the complex plane C is called the spectrum of T .

Furthermore, the spectrum σ(T, X) is partitioned into three disjoint sets as follows:

The point spectrum σp(T, X) is the set of all λ ∈ C such that T−1
λ dose not exist.

The element of σp(T,X) is called eigenvalue of T .

The continuous spectrum σc(T, X) is the set of all λ ∈ C such that T−1
λ exists and

satisfies (R3) but not (R2), that is, T−1
λ is unbounded.

The residual spectrum σr(T,X) is the set of all λ ∈ C such that T−1
λ exists but do

not satisfy (R3), that is, the domain of T−1
λ is not dense in X. The condition (R2)

may or may not holds good.

Goldberg’s classification of operator Tλ = (T − λI) (see [10], PP. 58− 71):

Let X be a Banach space and Tλ = (T − λI) ∈ B(X), where λ is a complex num-

ber. Again let R(Tλ) and T−1
λ be denote the range and inverse of the operator Tλ,

respectively. Then following possibilities may occur:

(A) R(Tλ) = X,

(B) R(Tλ) 6= R(Tλ) = X,

(C) R(Tλ) 6= X,

and

(1) Tλ is injective and T−1
λ is continuous,

(2) Tλ is injective and T−1
λ is discontinuous,

(3) Tλ is not injective.

If these possibilities are combined in all possible ways, nine different states are cre-

ated. These are labelled by: A1, A2, A3, B1, B2, B3, C1, C2 and C3. If λ is a complex

number such that Tλ ∈ A1 or Tλ ∈ B1, then λ is in the resolvent set ρ(T, X) of

T on X. The other classifications give rise to the fine spectrum of T . We use

λ ∈ σB2(T, X) means the operator Tλ ∈ B2, i.e. R(Tλ) 6= R(Tλ) = X and Tλ is

injective but T−1
λ is discontinuous. Similarly others.
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Lemma 1.2. ([10], p.59). A linear operator T has a dense range if and only if

the adjoint T ∗ is one to one.

Lemma 1.3. ([10], p.60). The adjoint operator T ∗ is onto if and and only if T

has a bounded inverse.

Lemma 1.4. The matrix A = (ank) gives rise to a bounded linear operator

T ∈ B(c0) from c0 to itself if and only if

(1) the rows of A in `1 and their `1 norms are bounded.

(2) the columns of A are in c0.

Note: The operator norm of T is the supremum of the `1 norms of rows.

In this paper, we introduce a class of a generalized difference operator ∆uv over

space c0.

Let u = (uk) be a sequence of positive real numbers such that uk 6= 0 for each k ∈ N
with U = limk→∞ uk 6= 0 and v = (vk) is either constant or strictly decreasing

sequence of positive real numbers with V = limk→∞ vk 6= 0, and supk vk < U + V .

We define the operator ∆uv on sequence space c0 as follows:

∆uvx = ∆uv(xn) = (un−1xn−1 + vnxn)∞n=0. with x−1 = 0

It is easy to verify that the operator ∆uv can be represented by the matrix,

∆uv =




v0 0 0 0 0 · · ·
u0 v1 0 0 0 · · ·
0 u1 v2 0 0 · · ·
0 0 u2 v3 0 · · ·
...

...
...

...
...

. . .




.

2. Main Results

In this section, we compute spectrum, the point spectrum, the continuous spec-

trum and the residual spectrum of the generalized forward difference operator ∆uv
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over the sequence space c0.

Theorem 2.1. The operator ∆uv : c0 −→ c0 is a bounded linear operator and

‖∆uv‖(c0, c0) = sup
k

(|uk−1|+ |vk|).

Proof: It is elementary.

Theorem 2.2. σp(∆uv, c0) = ∅.

Proof: The proof of this theorem is divided into two cases.

Case(i): Suppose (vk) is a constant sequence, say vk = V for all k. Consider ∆uvx =

λx, for x 6= 0 = (0, 0, 0, . . .) in c0, which gives

v0x0 = λxo

u0x0 + v1x1 = λx1

u1x1 + v2x2 = λx2

...

ukxk + vk+1xk+1 = λxk+1

...

Let xm be the first non-zero entry of the sequence x = (xn). So we get um−1xm−1 +

vmxm = λxm which implies λ = vm and from the equation umxm + vm+1xm+1 =

λxm+1 we get xm = 0, which is a contradiction to our assumption. Therefore,

σp(∆v, c0) = ∅.

Case(ii): Suppose (vk) is a strictly decreasing sequence. Consider ∆uvx = λx, for

x 6= 0 = (0, 0, 0, . . .) in c0, which gives system of equations, above. Hence, for

all λ /∈ {
v0, v1, v2, . . .

}
, we have xk = 0 for all k, which is a contradiction. So

λ /∈ σp(∆uv, c0). This shows that

σp(∆uv, c0) ⊆
{
v0, v1, v2, . . .

}
.
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Let λ = vm for some m. Then x0 = x1 = . . . = xm−1 = 0. Now if xm = 0, then

xk = 0 for all k, which is a contradiction. Also if xm 6= 0, then

xk+1 =
uk

vk+1 − vm
xk, for all k ≥ m,

and hence,

lim
k→∞

∣∣∣∣
xk+1

xk

∣∣∣∣ = lim
k→∞

∣∣∣∣
uk

vk+1 − vm

∣∣∣∣ =
∣∣∣∣

U

vm − V

∣∣∣∣ > 1,

since supk vk < U + V . Then, x /∈ c0. Thus

σp(∆uv, c0) = ∅.

If T : c0 −→ c0 is a bounded linear operator with matrix A, then it is known

that the adjoint operator T ∗ : c∗0 −→ c∗0 is defined by the transpose of the matrix

A. The dual space of c0 is isomorphic to `1, the space of all absolutely summable

sequences, with the norm ‖x‖ =
∞∑

k=0

|xk|.
We now obtain spectrum of the dual operator ∆∗

uv of ∆uv over the space c∗0.

Theorem 2.3. {λ ∈ C : |λ− V | < U} ⊆ σp(∆∗
uv, c∗0).

Proof: Suppose ∆∗
uvy = λy, for y 6= 0 = (0, 0, 0, . . .) in `1, where

∆∗
uv =




v0 u0 0 0 0 · · ·
0 v1 u1 0 0 · · ·
0 0 v2 u2 0 · · ·
0 0 0 v3 u3 · · ·
...

...
...

...
...

. . .




and y =




y0

y1

y2

...




this gives

v0y0 + uoy1 = λyo

v1y1 + u1y2 = λy1

v2y2 + u2y3 = λy2

...

vkyk + ukyk+1 = λyk

...
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If y0 = 0, then yk = 0 for all k. Hence y0 6= 0 and solving the equation above, we

get

yk+1 =
(

λ− vk

uk

)
yk for all k ≥ 0.

And consequently

lim
k→∞

∣∣∣∣
yk+1

yk

∣∣∣∣ =
∣∣∣∣
V − λ

U

∣∣∣∣ < 1 provided |V − λ| < U.

Hence

|V − λ| < U ⇒ y = (yk) ∈ `1

this shows that

{λ ∈ C : |λ− V | < U} ⊆ σp(∆∗
uv, c∗0).

The following example shows that the equality in Theorem 2.3, do not hold, in

general.

Example 2.1 Suppose that vk =
(

k+1
k+3

)2

and uk =
(

k+1
k+2

)2

, k ∈ N. Then

limk→∞ uk = U = 1 and limk→∞ vk = V = 1. Clearly, 0 /∈ {λ ∈ C : |λ− V | < U}.
But 0 ∈ σp(∆∗

uv, c∗0) since there exists y = (y0.y1, y2, ...) such that y0 6= 0, y1 6= 0

and yk+1 = −vk−1
uk−1

yk, k ≥ 1 and

∑
|yk| = |y0|+ |y1|+ 4|y1|

∞∑

k=2

(
1

k + 2

)2

< ∞.

Theorem 2.4. σr(∆uv, c0) = {λ ∈ C : |λ− V | < U}.

Proof: We show that the operator ∆uv−λI has an inverse and R(∆uv − λI) 6= c0

for λ satisfying |λ−V | < U. If λ ∈ {λ ∈ C : |λ−V | < U}, then the operator ∆uv−λI

is a triangle except for λ = V (when (vk) is a constant sequence) and λ = vk, for

some k ∈ N and consequently the operator ∆uv − λI has an inverse. Further by

Theorem 2.2, the operator ∆uv−λI is one to one for λ = V (when (vk) is a constant

sequence) and λ = vk, for some k ∈ N and hence has an inverse. But ∆∗
uv − λI is

not one to one by Theorem 2.3. Now Lemma 1.2 yields the fact that the range of

the operator ∆uv − λI is not dense in c0 and this step completes the proof.

Theorem 2.5. σ(∆uv, c0) = {λ ∈ C : |λ− V | ≤ U}.
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Proof: Let λ ∈ C with |λ−V | > U . Clearly, λ = V as well as λ = vk, for all k do

not satisfied. So, λ 6= V and λ 6= vk, for all k. We get the operator ∆uv−λI = (ank)

is a triangle and hence has an inverse. Thus, (∆uv − λI)−1 = (bnk) where

bnk =





(−1)n+k

(vn−λ)

∏n−1
i=k

(
ui

vi−λ

)
n > k

1
vn−λ n = k

0 n < k.

Now we show that (∆uv − λI)−1 ∈ B(c0). Let Rn =
∞∑

k=0

|bnk| then,

Rn =
1

|vn − λ|

(
1 +

n−1∑

k=0

n−1∏

i=k

∣∣∣∣
ui

vi − λ

∣∣∣∣
)

.

Clearly, for each n ∈ N, the series
∞∑

k=0

|bnk| is convergent.

Next, we show that sup
n

Rn < ∞. Let α = limn→∞
∣∣∣ un−1
vn−λ

∣∣∣ then α =
∣∣∣ U
V−λ

∣∣∣ which

shows that 0 < α < 1 and so

lim
n→∞

1
|vn − λ| = lim

n→∞

(∣∣∣∣
un−1

vn − λ

∣∣∣∣
∣∣∣∣

1
un−1

∣∣∣∣
)

=
α

U
.

We have,

Rn =
∣∣∣∣

un−1

vn − λ

∣∣∣∣ Rn−1 +
∣∣∣∣

1
vn − λ

∣∣∣∣ .

Then limn→∞Rn = α limn→∞Rn−1 + α
U , consequently

lim
n→∞

Rn =
α

(1− α)U
< ∞.

Since (Rn) is a convergent sequence of positive real numbers, we have sup
n

Rn <

∞. Again since α = limn→∞
∣∣∣ un−1
vn−λ

∣∣∣ < 1, therefore
∣∣∣ un−1
vn−λ

∣∣∣ < 1, for large n and

consequently

lim
n→∞

|b(n0)| = lim
n→∞

∣∣∣∣∣
(−1)n

(v0 − λ)

n∏

i=1

(
ui−1

vi − λ

)∣∣∣∣∣ = 0.

similarly, we can show that limn→∞ |b(nk)| = 0, for all k = 1, 2, 3, . . . .

Thus

λ ∈ {λ ∈ C : |λ− V | > U} ⇒ (∆uv − λI)−1 ∈ B(c0).
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On the other hand since (∆uv−λI)−1 ∈ (c0, c0), we have equivalently R(∆uv − λI) =

c0 which means that D((∆uv − λI)−1) = c0. This shows that

σ(∆uv, c0) ⊆ {λ ∈ C : |λ− V | ≤ U}.

Combining this with Theorem 2.4, we get

{λ ∈ C : |λ− V | < U} ⊆ σ(∆uv, c0) ⊆ {λ ∈ C : |λ− V | ≤ U}.

Since the spectrum of any bounded operator is closed, we have

σ(∆uv, c0) = {λ ∈ C : |λ− V | ≤ U}.

Theorem 2.6. σc(∆uv, c0) = {λ ∈ C : |λ− V | = U}.

Proof: Since σr(∆uv, c0) = {λ ∈ C : |λ− V | < U}, |λ− V | < U}, σp(∆uv, c0) =

∅ and σ(∆uv, c0) is the disjoint union of the parts σp(∆uv, c0), σr(∆uv, c0) and

σc(∆uv, c0), we deduce that

σc(∆uv, c0) = {λ ∈ C : |λ− V | = U}.

Theorem 2.7. If λ ∈ {λ ∈ C : |λ− V | > U}, then ∆uv − λI ∈ A1.

Proof: Since λ 6= vk, therefore the operator ∆uv − λI is triangle. Hence it has

inverse and in the proof of Theorem 2.5 we show that

λ ∈ {λ ∈ C : |λ− V | > U} ⇒ (∆uv − λI)−1 ∈ B(c0).

this is equivalent to the fact that the operator (∆uv − λI)−1 is continues for λ ∈
{λ ∈ C : |λ − V | > U}. Also, since (∆uv − λI)−1 ∈ (c0, c0), therefore for every

y ∈ c0, we can find c0, we can find x ∈ c0 such that (∆uv − λI)x = y, i.e.

∆uv − λI ∈ A1.

Theorem 2.8. Let vk be a constant sequence, say vk = V and λ 6= V, λ ∈
σr(∆uv, c0). Then λ ∈ C2.
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Proof: Since λ 6= V , therefore the operator (∆uv−λI) is triangle. Hence it has an

inverse. Now suppose V 6= λ ∈ {λ ∈ C : |λ− V | < U}. Then α = limn→∞
∣∣∣ un−1
vn−λ

∣∣∣ >

1 this means that
∣∣∣ un−1
vn−λ

∣∣∣ > 1, for large n and so

lim
n→∞

|b(n0)| = lim
n→∞

∣∣∣∣∣
(−1)n

(v0 − λ)

n∏

i=1

(
ui−1

vi − λ

)∣∣∣∣∣ 6= 0.

Hence

V 6= λ ∈ {λ ∈ C : |λ− V | < U} ⇒ (∆uv − λI)−1 /∈ B(c0)

this is equivalent to the operator (∆uv−λI)−1 is discontinues for V 6= λ ∈ {λ ∈ C :

|λ−V | < U}. Also by Theorem 2.3 and Lemma 1.2 for V 6= λ ∈ {λ ∈ C : |λ−V | <
U} we have R(∆uv − λI) 6= c0 and hence λ ∈ C2.

Now, we may give the consequence on the non-compactness of the operator ∆uv.

Definition 2.9. Let X and Y be the normed spaces. An operator T : X → Y is

called a compact linear operator if T is linear and and if for every bounded subset

M of X, the image T (M) is relatively compact.

Lemma 2.10 (13, p.432). . Let T : X → X be a compact linear operator on a

Banach spaces X. Then spectral value λ of T , if exists, is a eigenvalue of T .

combining the consequences obtained in Theorems 2.2-2.6 with Lemma 2.10 we

have:

Corollary 2.11. The operator ∆uv is not compact.
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