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Abstract. The largest class of hyperstructures is the one which satisfy the

weak properties. These are called Hv-structures introduced in 1990 and they

proved to have a lot of applications on several applied sciences. In this paper

we present an introduction on the special classes of hyperstructures used in

the Lie-Santilli theory called e-hyperstructures. Several extensions of these

hyperstructures are also presented
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1. Introduction

We deal with hyperstructures called Hv-structures introduced in 1990 [15], which

satisfy the weak axioms where the non-empty intersection replaces the equality.

Some basic definitions are the following:

In a set H equipped with a hyperoperation (abbreviation hyperoperation=hope)

· : H ×H → ℘(H)− {∅}, we abbreviate by

WASS the weak associativity : (xy)z ∩ x(yz) 6= ∅, ∀x, y, z ∈ H and by

COW the weak commutativity : xy ∩ yx 6= ∅, ∀x, y ∈ H.

The hyperstructure H, · is called Hv-semigroup if it is WASS, it called Hv-group

if it is reproductive Hv-semigroup, i.e. xH = Hx = H, ∀x ∈ H. The hyperstructure
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(R, +, ·) is called Hv-ring if both (+) and (·) are WASS, the reproduction axiom

is valid for (+) and (·) is weak distributive with respect to (+):

x(y + z) ∩ (xy + yz) 6= ∅, (x + y)z ∩ (xz + yz) 6= ∅, ∀x, y, z ∈ R.

Motivation. The motivation for Hv-structures is the following: We know that the

quotient of a group with respect to an invariant subgroup is a group. F. Marty

from 1934, states that, the quotient of a group with respect to any subgroup is

a hypergroup. Finally, the quotient of a group with respect to any partition (or

equivalently to any equivalence relation) is an Hv-group. This is the motivation to

introduce the Hv-structures [16].

Specifying this motivation we remark: Let (G, ·) be a group and R be an equiva-

lence relation (or a partition) in G, then (G/R, ·) is an Hv-group, therefore we have

the quotient (G/R, ·)/β∗ which is a group, the fundamental one. Remark that the

classes of the fundamental group (G/R, ·)/β∗ are a union of some of the R-classes.

Otherwise, the (G/R, ·)/β∗ has elements classes of G where they form a partition

which classes are larger than the classes of the original partition R.

In an Hv-semigroup the powers of an element h ∈ H are defined as follows

h1 = {h}, h2 = h · h, . . . , hn = h◦h◦ . . .◦ h,

where (◦) denotes the n-ary circle hope, i.e. take the union of hyperproducts, n

times, with all possible patterns of parentheses put on them. An Hv-semigroup

(H, ·) is called cyclic of period s, if there exists an element g, called generator, and

a natural number n, the minimum one, such that

H = h1 ∪ h2 ∪ · · · ∪ hs.

Analogously the cyclicity for the infinite period is defined [14]. If there is an element

h and a natural number s, the minimum one, such that H = hs, then (H, ·) is called

single-power cyclic of period s.

For more definitions and applications on Hv-structures, see the books [4, 5, 7]

and papers as [1, 3, 6]

The main tool to study hyperstructures are the fundamental relations β∗, γ∗ and

ε∗, which are defined, in Hv-groups, Hv-rings and Hv-vector spaces, resp., as the

smallest equivalences so that the quotient would be group, ring and vector space,
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resp. These relations were introduced by T.Vougiouklis [15, 16]. A way to find the

fundamental classes is given by theorems as the following [19, 20, 21]:

Theorem 1. Let (H, ·) be an Hv-group and denote by U the set of all finite prod-

ucts of elements of H. We define the relation β in H by setting xβy iff {x, y} ⊂ u

where u ∈ U . Then β∗ is the transitive closure of β.

Analogous theorems for the relations γ∗ in Hv-rings, ε∗ in Hv-modules and Hv-

vector spaces, are also proved. Generalizations of the hyperstructure theory can be

found in books as [5, 7, 16]. An element is called single if its fundamental class is

singleton [16].

Fundamental relations are used for general definitions. Thus, an Hv-ring (R, +, ·)
is called Hv-field if R/γ∗ is a field. Let (H, ·), (H, ∗) be Hv-semigroups defined on

the same set H. (·) is called smaller than (∗), and (∗) greater than (·), iff there

exists an f ∈ Aut(H, ∗) such that xy ⊂ f(x ∗ y), ∀x, y ∈ H.

Then we write · ≤ ∗ and we say that (H, ∗) contains (H, ·). If (H, ·) is a structure

then it is called basic structure and (H, ∗) is called Hb-structure.

Theorem 2. (The Little Theorem). Greater hopes than the ones which are

WASS or COW, are also WASS or COW, respectively.

This Theorem leads to a partial order on Hv-structures and mainly to a corre-

spondence between hyperstructures and posets. The determination of all Hv-groups

and Hv-rings is very interesting but hard. Fortunately, in this direction there are

results by R. Bayon and N. Lygeros. One can see, for example, in their paper [2]

how many Hv-groups and Hv-rings there exist, up to isomorphism, for small sets,

for several classes of hyperstructures, of two, three or four elements.

Definitions 3 [18, 19]. Let (H, ·) be hypergroupoid. We remove h ∈ H, if we

take the restriction of (·) in the set H − {h}. h ∈ H absorbs h ∈ H if we replace h

by h and h does not appear. h ∈ H merges with h ∈ H, if we take as product of

any x ∈ H by h, the union of the results of x with both h, h, and consider h and h

as one class with representative h.

Hv-structures are used in Representation Theory. Representations of Hv-groups

can be considered by generalized permutations or by Hv-matrices [16]. Representa-

tions by generalized permutations can be achieved using translations. In this theory

the single elements are playing a crucial role. Hv-matrix is called a matrix if has

entries from an Hv-ring. The hyperproduct of Hv-matrices is defined in a usual
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manner. In representations of Hv-groups by Hv-matrices, there are two difficulties:

To find an Hv-ring and an appropriate set of Hv-matrices.

Hopes on any type of matrices can be defined:

Definition 4 [13, 28, 10]. Let A = (aij) ∈ Mm×n be a matrix and s, t ∈ N , with

1 ≤ s ≤ m, 1 ≤ t ≤ n. Then helix-projection is a map st: Mm× n → Ms × t :

A → Ast = (aij), where Ast has entries

aij = ai+κs,j+λt|1 ≤ i ≤ s, 1 ≤ j ≤ t and κ, λ ∈ N, i + κs ≤ m, j + λt ≤ n

Let A = (aij) ∈ Mm×n, B = (bij) ∈ Mu×v be matrices and s = min(m,u),

t = min(n, v). We define a hyper-addition, called helix-addition, by

⊕ : Mm×n×Mu×v → ℘(Ms×t) : (A,B) → A⊕B = Ast+Bst = (aij)+ (bij) ⊂ Ms×t

where (aij) + (bij) = {(cij) = (aij + bij)|aij ∈ aij and bij ∈ bij}.
Let A = (aij) ∈ Mm×n,B = (bij) ∈ Mu×v, s = min(n, u), define the helix-

multiplication, by

⊕ : Mm×nMu×v → ℘(Mm×v) : (A,B) → A⊕ B = Ams · Bsv = (aij) · (bij) ⊂ Mm×v

where (aij) + (bij) = {(cij) = (aijbij)|aij ∈ aij and bij ∈ bij}. The helix-addition

is commutative, WASS but not associative. The helix-multiplication is WASS, not

associative and it is not distributive, not even weak, to the helix-addition. For all

matrices of the same type, the inclusion distributivity, is valid.

Definitions 5 [19]. Let (F, +, ·) be an Hv-field, (V, +) be a COW Hv-group and

there exists an external hope

· : F × V → ℘(V )− ∅ : (a, x) → ax

such that, for all a, b in F and x, y in V we have

a(x + y) ∩ (ax + ay) 6= ∅, (a + b)x ∩ (ax + bx) 6= ∅, (ab)x ∩ a(bx) 6= ∅,

then V is called an Hv-vector space over F. In the case of an Hv-ring instead of

an Hv-field then the Hv-modulo is defined. In these cases the fundamental relation

ε∗ is the smallest equivalence relation such that the quotient V/ε∗ is a vector space

over the fundamental field F/γ∗.

The general definition of an Hv-Lie algebra over F was given in [17] as follows:

Definition 6 [23]. Let (L, +) be an Hv-vector space over the Hv-field (F, +, ·),
take the canonical map φ : F → F/γ∗ with ωF = x ∈ F : φ(x) = 0, 0 is the zero of
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F/γ∗, ωL the core of φ′ : L → L/ε∗ and denote again 0 the zero of L/ε∗. Consider

the bracket (commutator) hope:

[, ] : L× L → ℘(L)− ∅ : (x, y) → [x, y]

then L is an Hv-Lie algebra over F if the following axioms are satisfied:

(L1) The bracket hope is bilinear, i.e.

[λ1x1 + λ2x2, y] ∩ (λ1[x1, y] + λ2[x2, y]) 6= ∅
[x, λ1y1 + λ2y] ∩ (λ1[x, y1] + λ2[x, y2]) 6= ∅, ∀x, x1, x2, y, y1, y2 ∈ L and λ1, λ2 ∈ F

(L2)[x, x] ∩ ωL 6= ∅, ∀x ∈ L

(L3)([x, [y, z]] + [y, [z, x]] + [z, [x, y]]) ∩ ωL 6= ∅,∀x, y ∈ L

In 1989 Corsini and Vougiouklis [16], introduced a method, the uniting elements

method, to obtain stricter algebraic structures, from given ones, through hyper-

structure theory. This method was introduced before the introduction of the Hv-

structures, but in fact the Hv-structures appeared in the procedure. This method

is the following:

Definition 7. The uniting elements method is the following: Let G be a struc-

ture and d be a property, which is not valid, and suppose that d is described by a

set of equations. Consider the partition in G for which it is put together, in the

same class, every pair of elements that causes the non-validity of d. The quotient

G/d is an Hv-structure. Then quotient of G/d by the fundamental relation β∗, is a

stricter structure (G/d)β∗ for which d is valid.

An application of the uniting elements is when more than one properties are

desired. The reason for this is some of the properties lead straighter to the classes

than others. The commutativity and the reproductivity are easily applicable. One

can do this because the following Theorem is valid:

Theorem [16]. Let (G, ·) be groupoid, and F = f1, . . . , fm, fm+1, . . . , fm+n a

system of equations on G consisting of two subsystems Fm = f1, . . . , fm, Fn =

fm+1, . . . , fm+n. Let σ and σm be the equivalence relations defined by the uniting

elements using the F and Fm respectively, and let σn be the equivalence relation

defined using the induced equations of Fn on the groupoid Gm = (G/σm)/β∗. Then

we have

(G/σ)/β∗ ∼= (Gm/σn)/β∗.
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During last decades hyperstructures seem to have a variety of applications not only

in other branches of mathematics but also in many other sciences including social

studies. These applications range from biomathematics -conchology, inheritance-

and hadronic physics to automata theory, to mention but a few. The hyperstruc-

tures theory is closely related to fuzzy theory; consequently, hyperstructures can

now be widely applicable in industry and production, too.

In several books and papers, such as [3, 5, 7, 9, 12, 15] one can find numerous

applications. An important new application, which combines hyperstructure theory

and fuzzy theory, is to replace in questionnaires the scale of Likert by the bar of

Vougiouklis & Vougiouklis. The suggestion is the following:

Definition 8. “In every question substitute the Likert scale with ‘the bar’ whose

poles are defined with ‘0’ on the left end, and ‘1’ on the right end: The sub-

jects/participants are asked instead of deciding and checking a specific grade on

the scale, to cut the bar at any point s/he feels expresses her/his answer to the

specific question”.

The use of the bar of Vougiouklis & Vougiouklis instead of a scale of Likert has

several advantages during both the filling-in and the research processing [11, 27].

2. Two classes of Hv-structures

2.1. The theta (∂) hopes. In [22] a hope, in a groupoid with a map f on it,

denoted ∂f , is introduced. Since there is no confusion, we write simply theta ∂.

The symbol ‘∂’ appears in Greek papyrus to represent the letter ‘theta’, usually in

middle rather than the beginning of the words.

Definitions 9. Let H be a set equipped with n operations (or hopes)

⊗1,⊗2, . . . ,⊗n and a map (or multivalued map) f : H → H (or f : H → ℘(H) −
{∅}, respectively), then n hopes ∂1, ∂2, . . . , ∂n on H can be defined, called theta-

operations (we rename here theta-hopes and we write ∂-hope) by putting

x∂iy = {f(x)⊗i y, x⊗i f(y)}, ∀x, y ∈ H and i ∈ {1, 2, . . . , n}
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or, in case where ⊗i is hope or f is multivalued map, we have

x∂iy = (f(x)⊗i y) ∪ (x⊗i f(y)), ∀x, y ∈ H and i ∈ {1, 2, . . . , n}.

If ⊗i is associative then ∂i is WASS.

Analogously one can use several maps f , instead than only one.

Let (G, ·) be a groupoid and fi : G → G, i ∈ I, be a set of maps on G. Take the map

f∪ : G → ℘(G) such that f∪(x) = {fi(x)|i ∈ I} and we call it the union of the fi(x).

We call union ∂-hopes, on G if we consider the map f ∪ (x). A special case is to

take the union of f with the identity, i.e. f = f∪(id), so f(x) = {x, f(x)},∀x ∈ G,

which is called b-∂-hope. We denote the b-∂-hope by (∂), so

x∂y = xy, f(x) · y, x · f(y), ∀x, y ∈ G.

This hope contains the operation (·) so it is a b-hope. If f : G → ℘(G)− ∅, then

the b-∂-hope is defined by using the map f(x) = x ∪ f(x), ∀x ∈ G.

Motivation for the definition of the theta-hope is the map derivative where

only the multiplication of functions can be used. Therefore, in these terms, for two

functions s(x), t(x), we have s∂t = s′t, st′ where (′) denotes the derivative.

For several results one can see [22, 23, 25, 26].

Examples. (a) Taking the application on the derivative, consider all polynomials

of up to first degree gi(x) = aix + bi. We have

g1∂g2 = {a1a2x + a1b2, a1a2x + b1a2},

so this is a hope in the first degree polynomials. Remark that all polynomials x+ c,

where c be a constant, are units.

(b) The constant map. Let (G, ·) be group and f(x) = a, thus

x∂y = {ay, xa}, ∀ x, y ∈ G. If f(x) = e, then we obtain x∂y = {x, y}, the smallest

incidence hope.

Properties. If (G, ·) is a semigroup then:

a. For every f , the ∂-hope is WASS.

b. For every f , the b-∂-hope (∂) is WASS.

c. If f is homomorphism and projection, then (∂) is associative.

Properties. Reproductivity. For the reproductivity we must have

x∂G = ∪g∈G{f(x) · g, x · f(g)} = G and G∂x = ∪g∈G{f(g) · x, g · f(x)} = G.
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Thus, if (·) is reproductive then (·) is also reproductive.

Commutativity. If (·) is commutative then (∂) is commutative. If f is into the

centre of G, then (∂) is commutative. If (·) is COW then, (∂) is COW.

Unit elements. u is a right unit element if x∂u = f(x) · u, x · f(u) 3 x. So f(u) = e,

where e be a unit in (G, ·). The elements of the kernel of f , are the units of (G, ·).
Inverse elements. Let (G, ·) be a monoid with unit e and u be a unit in (G, ·), then

f(u) = e. For given x, the elements x′ = (f(x))−1u and x′ = u(f(x))−1, are the

right and left inverses, respectively. We have two-sided inverses iff f(x)u = uf(x).

From the above properties it is clear that:

Proposition 10. Let (G, ·) be a group then, for all maps f : G → G, the

hyperstructure (G, ∂) is an Hv-group.

A construction between ∂ and ∂ is the one which obtained by using special maps.

Definition 10. Let (G, ·) be a groupoid and f : G → G be a map, we call basic

set of the map f the set B = Bf = x ∈ G : f(x) = x. Then, if B ∈ ∅, we have

x∂y = xy,∀x, y ∈ B

x∂y = {xy, x · f(y)}, ∀x ∈ B, y ∈ G−B,

x∂y = {f(x) · y, xy}, ∀x ∈ G−B, y ∈ B,

x∂y = {f(x) · y, x · f(y)}, ∀x, y ∈ G−B.

For (G, ·) groups, we obtain the following

(1) If B is a subgroup of (G, ·), then (B, ∂) is a sub-Hv-group of (G, ∂).

(2) If e ∈ B, then e is a unit of (B, ∂).

Propositions. (a) Let g ∈ G is a generator of the group (G, ·). If g ∈ B then,

for every f , the element g is a generator in G, ∂).

(b) Let g ∈ G is a generator of the group (G, ·). We suppose that there exists an

element w such that f(w) = g, then the element w is a generator in (G, ∂).

There is a connection of the ∂-hopes with other classes of hyperstructures:

Example. Merging and ∂. If (H, ·) is a groupoid and h ∈ H merges with the

element h ∈ H, then h does not appeared and we have for the merge hyperstructure

(H, ◦),

h ◦ x = {h · x, h · x}, x ◦ h = {x · h, x · h}, h ◦ h = {h · h, h · h, h · h, h · h}

and in the rest cases (◦) ≡ (·), so we have the hyperstructure (H − {h}, ◦).
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For a connection of the merge with the ∂-hope, consider the map f such that

f(h) = h and f(x) = x in the rest cases. Then in (H − {h}, ∂) we have,

∀ x, y ∈ H − {h}

h∂x = {h · x, h · x}, x∂h = {x · h, x · h} and h∂h = {h · h, h · h}
and in the rest cases (∂) coincides with (·). Therefore, ∂ ≤ ◦, more precisely

h∂h = {h · h, h · h} ⊂ {h · h, h · h, h · h, h · h} = h ◦ h

and in the remaining cases we have ∂ ≡ ◦.
Definition 11. Let (R, +, ·) be a ring and f : R → R, g : R → R be two maps.

We define two hopes (∂+) and (∂·), called both theta-hopes, on R as follows

x∂+y = {f(x) + y, x + f(y)} and x∂ · y = {g(x)y, xg(y)}, ∀x, y ∈ G.

A hyperstructure (R, +, ·), where (+), (·) are hopes which satisfy all Hv-ring axioms,

except the weak distributivity, will be called Hv-near-ring.

Propositions 12. (a) Let (R, +, ·) be a ring and f : R → R, g : R → R be maps.

The (R, ∂+, ∂·), called theta, is an Hv-near-ring. Moreover (∂+) is commutative.

(b) Let (R, +, ·) be a ring and f : R → R, g : R → R maps, then (R, ∂+, ∂·), is an

Hv-ring.

Properties. (Special classes). The theta hyperstructure (R, ∂+, ∂·) takes a new

form and has some properties in several cases as the following ones:

(a) If f is a homomorphism and projection, then

x∂ · (y∂+z) ∩ (x∂ · y)∂+(x∂ · z) = {f(x)f(y) + f(x)z, f(x)y + f(x)f(z)} 6= ∅.

Therefore, (R, ∂+, ∂·) is an Hv-ring.

(b) If f(x) = x,∀x ∈ R, then (R, +, ∂·) becomes a multiplicative Hv-ring:

x∂ · (y + z) ∩ (x∂ · y) + (x∂ · z) = {g(x)y + g(x)z} 6= ∅.

If, moreover, f is a homomorphism, then we have a ‘more’ strong distributivity:

x∂ · (y + z) ∩ (x∂ · y) + (x∂ · z) = {g(x)y + g(x)z, xg(y) + xg(z)} 6= ∅.

Theorem 13. Consider the group of integers (Z, +) and n 6= 0 be a natural number.

Take the map f such that f(0) = n and f(x) = x, ∀x ∈ Z − 0. Then

(Z, ∂)/β∗ ∼= (Zn, +).
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Theorems 14. (a) Take the ring of integers (Z, +, ·) and fix n 6= 0 a natural

number. Consider the map f such that f(0) = n and f(x) = x, ∀x ∈ Z − 0. Then

(Z, ∂+, ∂·) is an Hv-near-ring, with

(Z, ∂+, ∂·)/γ∗ ∼= Zn.

(b) Consider the (Z, +, ·) and n 6= 0 a natural. Take the map f such that f(n) = 0

and f(x) = x, ∀x ∈ Z − n. Then (Z, ∂+, ∂·) is an Hv-ring, moreover,

(Z, ∂+, ∂·)/γ∗ ∼= Zn.

Special case of the above is for n = p, prime, then (Z, ∂+, ∂·) is an Hv-field.

Now we can see theta hopes in Hv-vector spaces and Hv-Lie algebras:

Theorem 15. Let (V, +, ·) be an algebra over the field (F, +, ·) and f : V → V

be a map. Consider the ∂-hope defined only on the multiplication of the vectors

(·), then (V, +, ∂) is an Hv-algebra over F , where the related properties are weak.

If, moreover f is linear then we have more strong properties.

Proof. It is clear that (∂) is WASS. Moreover

x∂(y + z) = {f(x)(y + z), xf(y + z)}

and (x∂y) + (x∂z) = {f(x)y + f(x)z, f(x)y + xf(z), xf(y) + f(x)z, xf(y) + xf(z)}.
Thus the weak distributivity is valid: x∂(y + z)∩ (x∂y) + (x∂z) = f(x)(y + z) 6= ∅.
If f is linear then the inclusion distributivity is valid. Moreover

λ(x∂y) = {λf(x)y, λxf(y)}

(λx)∂y = {f(x)y, λxf(y)} and x∂(λy) = {λf(x)y, xf(λy)}

so

λ(x∂y) ∩ (λx)∂y = λxf(y) 6= ∅ and λ(x∂y) ∩ x∂(λy) = λf(x)y 6= ∅

But, if f is linear, then we have λ(x∂y) = (λx)∂y = x∂(λy).

Definition 16. Let (A, +, ·) be an algebra over the field F . Take any map

f : A → A, then the ∂-hope on the Lie bracket [x, y] = xy−yx, is defined as follows

x∂y = {f(x)y − f(y)x, f(x)y − yf(x), xf(y)− f(y)x, xf(y)− yf(x)}.

Remark that if we take the identity map f(x) = x, ∀x ∈ A, then x∂y = {xy−yx},
thus we have not a hope and remains the same operation.
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Proposition 17. Let (A, +, ·) be an algebra F and f : A → A be a linear

map. Consider the ∂-hope defined only on the multiplication of the vectors (·),
then (A,+, ∂) is an Hv-algebra over F , with respect to the ∂-hopes on Lie bracket,

where the weak anti-commutativity and the inclusion linearity is valid.

Proposition. Let (A, +, ·) be an algebra and f : A → A : f(x) = a be a constant

map. Consider the ∂-hope defined only on the multiplication of the vectors (·), then

(A, +, ∂) is an Hv-Lie algebra over F .

In the above theorem if one takes a = e, the unit element of the multiplication,

then the properties become more strong.

2.2. The theta P -hopes. A general way to define hopes, which are not always of

a constant length, from given operations [14, 16, 24] can be generalized as follows:

Definition 18. Let (G, ·) be a groupoid, then for every P ⊂ G,P 6= ∅ , we

define the following hopes called P -hopes: for all x, y ∈ G

P : xPy ∪ (xP )y, P r : xPry = (xy)P ∪ x(yP ), P 1 : xPly = (Px)y ∪ P (xy).

The (G,P ), (G,Pr) and (G,P1) are called P -hyperstructures. The most usual case

is if (G, ·) is semigroup, then

xPy = (xP )y ∪ x(Py) = xPy

and (G,P ) is a semihypergroup but we do not know about (G,Pr) and (G,Pl). In

some cases, depending on the choice of P , the (G,Pr) and (G,Pl) can be associative

or WASS. If in the set G, more operations are defined then obviously for each one

operation several P -hopes can be defined.

Definition 19. Let M = Mm×n be a module of m × n matrices over a ring R

and P = Pi : i ∈ I ⊆ M . We define, a kind of, a P -hope P on M as follows

P : M ×M → P (M) : (A,B) → APB = AP t
i B : i ∈ IM

where P t denotes the transpose of the matrix P .

The hope P , which is a bilinear map, is a generalization of Rees’ operation where,

instead of one sandwich matrix, a set of sandwich matrices is used. The hope P

is strong associative and the inclusion distributivity with respect to addition of

matrices
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AP (B + C) ⊆ APB + APC∀A,B,C ∈ M

is valid. Therefore, (M, +, P ) defines a multiplicative hyperring on non-square

matrices. Multiplicative hyperring means that only the multiplication is a hope.

Definition 20. Let M = Mm×n be module of m × n matrices over R and let

take sets S = sk : k ∈ K ⊆ R, Q = Qi : j ∈ J ⊆ M, P = Pi : i ∈ I ⊆ M . Define

three hopes as follows

S : R×M → P (M) : (r,A) → rSA = (rsk)A : k ∈ K ⊆ M

Q
+

:→ M ×M → P (M) : (A,B)AQ
+
B = A + Qj + B : j ∈ J ⊆ M

P : M ×M → P (M) : (A,B) → APB = AP t
i B : i ∈ IM

Then (M, S, Q+, P ) is a hyperalgebra over R called general matrix P -hyperalgebra.

In a similar way a generalization of this hyperalgebra can be defined if one con-

siders an Hv-ring or an Hv-field instead of a ring and using Hv-matrices.

Connection of ∂-hopes with P -hopes: Let (G, ·) be commutative semigroup and

P ⊂ G. Consider the multivalued map f : f(x) = P · x, ∀x ∈ G. Then we have

x∂y = x · y · P, ∀x, yG. So the ∂-hope coincides with the class of P -hopes.

3. The e-hyperstructures

The Lie-Santilli theory on isotopies was born in 1970’s to solve Hadronic Mechan-

ics problems. Santilli proposed a ’lifting’of the n-dimensional trivial unit matrix of

a normal theory into a nowhere singular, symmetric, real-valued, positive-defined,

n-dimensional new matrix. The original theory is reconstructed such as to admit

the new matrix as left and right unit. The isofields needed in this theory correspond

into the hyperstructures were introduced by Santilli and Vougiouklis in 1999 [12]

and they are called e-hyperfields. The Hv-fields can give e-hyperfields which can

be used in the isotopy theory in applications as in physics or biology. We present

in the following the main definitions and results restricted in the Hv-structures.

Definition 22. A hyperstructure (Hm; , ·) which contain a unique scalar unit

e, is called e-hyperstructure. In an e-hyperstructure, we normally assume that for
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every element x, there exists an inverse element x−1, i.e. e ∈ x · x−1 ∩ x−1 · x.

Remark that the inverses are not necessarily unique.

Definition 23. A hyperstructure (F, +, ·), where (+) is an operation and (·) is

a hope, is called e-hyperfield if the following axioms are valid:

(1) (F, +) is an abelian group with the additive unit 0,

(2) (·) is WASS,

(3) (·) is weak distributive with respect to (+),

(4) 0 is absorbing element: 0 · x = x · 0 = 0,∀x ∈ F,

(5) there exists a multiplicative scalar unit 1, i.e. 1 · x = x · 1 = x, ∀x ∈ F ,

(6) for every x ∈ F there exists a unique inverse x−1, such that 1 ∈ x · x−1 ∩
x−1 · x.

The elements of an e-hyperfield are called e-hypernumbers. In the case that

the relation: 1 = x · x−1 = x−1 · x, is valid, then we say that we have a strong

e-hyperfield.

Now we present a general construction which is based on the partial ordering of

the Hv-structures and on the Little Theorem.

Definition 24 [12, 8]. The Main e-Construction. Given a group (G, ·), where

e is the unit, then we define in G, a large number of hopes (⊗) as follows:

x⊗ y = xy, g1, g2, . . ., ∀x, y ∈ G− e, and g1, g2, . . . G− e

g1, g2, . . . are not necessarily the same for each pair (x, y). Then (G,⊗) becomes

an Hv-group, in fact is Hb-group which contains the (G, . . .). The Hv-group (G,⊗) is

an e-hypergroup. Moreover, if for each x, y such that xy = e, so we have x⊗y = xy,

then (G,⊗) becomes a strong e-hypergroup.

The proof is immediate since for both cases we enlarge the results of the group

by putting elements from G and applying the Little Theorem. Moreover one can

see that the unit e is a unique scalar element and for each x in G, there exists a

unique inverse x−1, such that 1 ∈ x ·x−1 ∩x−1 ·x and if this condition is valid then

we have 1 = x ·x1 = x−1 ·x. So the hyperstructure (G,⊗) is a strong e-hypergroup.

Remark. The above main e-construction gives an extremely large class of e-

hopes. These e-hopes can be used in the several more complicate hyperstructures

to obtain appropriate e-hyperstructures. However, notice that the most useful are

the ones where only few products are enlarged.
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Example. Consider the finite-non-commutative quaternion group

Q = 1,−1, i,−i, j,−j, k,−k whose multiplication is given by the table

· 1 -1 i −i j −j k −k

1 1 -1 i −i j −j k −k

−1 -1 1 −i i −j j −k k

i i −i −1 1 k −k −j j

−i −i i 1 −1 −k k j −j

j j −j −k k −1 1 i −i

−j −j j k −k 1 −1 −i i

k k −k j −j −i i −1 1

−k −k k −j j i −i 1 −1

Using this operation one can obtain several hopes which define very interesting

e-groups. For example, denoting i = i,−i, j = j,−j, k = k,−k we may define the

(∗) hope by the table:

∗ 1 -1 i −i j −j k −k

1 1 -1 i −i j −j k −k

−1 -1 1 −i i −j j k k

i i −i −1 1 k −k −j j

−i −i i 1 −1 −k k j −j

j j −j −k k −1 1 i −i

−j −j j k −k 1 −1 −i i

k k k j −j −i i −1 1

−k −k k −j j i −i 1 −1

The hyperstructure (Q, ∗) is strong e-hypergroup because 1 is scalar unit and

the elements −1, i,−i, j,−j, k and −k have unique inverses the elements

−1,−i, i,−j, j,−k and k, respectively, which are the inverses in the basic group.

The important thing of this example is that one can have more strict hopes.

The reason we gave the above example is to see that there is a large variety

of e-hyperstructures we can construct from given classical structures. One can

see in the papers [8, 12] and in the book [7] some classes of e-hyperstructures

and their properties and results connected them with the classical theory. The

representation theory and the Lie algebras as well as in hypermatrix theory large

classes of e-hyperstructures appear and can offer to Lie-Santilli algebraic theory
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models to represent their theory. In the Lie admissible algebras the P-hopes can

be used as one can see the replacement of the unit matrix in the Lie-bracket (in

isoproducts): by any set of matrices P:

[X,Y]P = (XP)Y− (YP)X, for all matrices or hypermatrices X and Y.
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