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Abstract. In this paper, The numerical solutions of the Klein-Gordon equa-

tions using Legendre wavelets are investigated. The interest is in solving the

problem using the wavelet basis due to its simplicity and efficiency in numerical

approximations. The approach of creating Legendre wavelets and their main

properties were briefly mentioned. Also, the numerical results were presented

for demonstrating the validity and applicability of the current technique.
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1. Introduction

Many positions in science and engineering lead to partial differential equations

but determining the exact solutions may be difficult. Therefore, for these systems

of PDEs, to the way of approximating unknown functions should be chosen. Several

numerical techniques have been developed in order to compute approximate solu-

tions of these equations, such as the finite difference, pseudo-spectral and adaptive

grid methods. In this paper, a wavelet-based method is illustrated in order to solve

partial differential equations, which are applied in mathematical physics. In the

numerical analysis, wavelet-based methods become important tools because of the

JOURNAL OF MAHANI MATHEMATICAL RESEARCH CENTER

VOL. 1, NUMBER 1 (2012) 29-45.

c©MAHANI MATHEMATICAL RESEARCH CENTER

29



30 E. HESAMEDDINI AND S. SHEKARPAZ

properties of localization. Wavelet transform or wavelet analysis has been recently

developed as a powerful tool for numerical applications[5,7]; also, wavelets serve as

a Galerkin basis for solving partial differential equations[13].

There have been a number of investigations in order to use wavelet expansions

for the numerical computation of solutions for differential equations[5,10,14].

1) The possibility of compressing representations of functions on a wavelet basis.

2) In the wavelet coordinate, differential operators may be preconditioned by a

diagonal matrix.

3) The properties of localization.

In wavelet methods, there are two ways of improving the approximation of the

solutions: increasing the resolution level and increasing the order of the wavelet

family[17].

The currently existing wavelet-based methods can be classified as Galerkin wavelet

methods and wavelet collocation methods[8,9,15,16]. The present study’s goal is to

show how wavelets and multi-resolution analysis can be used for improving the

method in terms of easy implementability and achieving the rapidity of its conver-

gence; however, a disadvantage of wavelet is the action of differential and integral

operator on the basis functions that can be difficult to determine, depending on the

choice of wavelets. Thus, the Legendre wavelets are used here[11,12].

The accuracy and efficiency of the method are demonstrated for the solutions

of two dimensional problems, such as Klein-Gordon equation. The Klein - Gordon

equation is considered in the following form:

(1) utt − uxx + b1u + b2g(u) = f(x, t),

by subject to initial conditions:

(2) u(x, 0) = a0(x), ut(x, 0) = a1(x),

where b1 and b2 are real numbers, g is a given nonlinear function and f is a known

function.

The Klein-Gordon equation is one of the most important mathematical models in

quantum mechanics[3]. This equation has attracted much attention in studying the

solutions and condensed matter physics, investigation of the interaction of solutions

in a collisionless plasma, the Recurrence of initial states and examination of the

nonlinear wave equations.



WAVELET SOLUTIONS OF THE KLEIN-GORDON EQUATION 31

There are several methods for evaluating the approximate solutions, such as

Variational Iteration Method (VIM), Homotopy Analysis Method (HAM) and Ho-

motopy Perturbation Method(HPM), but also the numerical methods are very com-

plicated and difficult. VIM is based on the general Lagrange’s multiplier method,

HAM contains an auxiliary parameter, h, which provides a simple way for adjust-

ing and controlling the convergence region, and the rate of convergence of the series

solution; and HPM deforms a difficult problem into a set of problems which are

easier to solve[1,2,4].

In this paper, the wavelet collocation method and Legendre wavelets are com-

bined to obtain the approximate solutions of (1). Thus, continuous, orthonormal

and compactly supported wavelets, called Legendre wavelets, which is specially con-

structed for the bounded interval is applied.

The present method consists of reducing (1) to a set of algebraic equations by ex-

panding unknown functions with unknown coefficient and then, the solutions are

compared with those resulting from the use of the other numerical methods and the

efficiency of this method is demonstrated.

This paper is organized as follows; Wavelets, Legendre wavelets and their main

properties are described in Section 2. Then, The Klein-Gordon equations and

derivatives are stated in Section 3 and these problems are solved using the Legendre

wavelets. In the final Section, numerical results are presented for comparison with

the obtained solutions from the other methods.

2. Preliminaries and Conventions of Wavelet Analysis

In this section, an overview of wavelets is expressed and a brief introduction to

wavelets, the Legendre wavelets and their properties is presented.

2.1. Wavelets. Wavelets are the family of functions which are derived from the

family of scaling function {φj,k : k ∈ Z} where:

(3) φ(x) =
∑

k

akφ(2x− k).

For the continuous wavelets, the following equations can be represented:

(4) ψa,b(x) = |a|− 1
2 ψ(

x− b

a
), a, b ∈ R, a 6= 0,
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where a and b are dilation and translation parameters, respectively, such that ψ(x)

is a single wavelet function[11].

The discrete values are put for a and b in the initial form of the continuous

wavelets, i.e.:

(5) a = a−j
0 , a0 > 1, b0 > 1,

b = kb0a
−j
0 , j, k ∈ Z.

Then, a family of discrete wavelets can be constructed as follows:

(6) ψj,k(x) = |a0|
j
2 ψ(aj

0x− kb0),

where ψj,k(x) are the wavelet basis for L2(R). Therefore, a wavelet basis is con-

structed in the following stage for a0 = 2 and b0 = 1.

Hence, the family of wavelets is in the following form:

(7) ψj,k = |2| j
2 ψ(2jx− k),

so, ψj,k(x) constitutes an orthonormal basis in L2(R), where ψ(x) is a single func-

tion.

2.2. Legendre Wavelets and Their Properties. The Legendre wavelets are in

the following way,

ψk,m(x) =





√
m + 1

22
j
2 pm(2jx− k) : k−1

2j ≤ x < k
2j ,

0 otherwise,

where m = 0, 1, 2, . . . , M − 1 and k = 1, 2, . . . , 2j−1. The coefficient
√

m + 1
2 is

for orthonormality, then by (7), the wavelets ψk,m(x) form an orthonormal basis

for L2[0, 1][5,11,12]. In the above formulation of Legendre wavelets, the Legendre

polynomials are in the following way:

p0 = 1,

p1 = x,

pm+1(x) =
2m + 1
m + 1

xpm(x)− m

m + 1
pm−1(x),

and {pm+1(x)} are the orthogonal functions of order m, which is named the well-

known shifted Legendre polynomials on the interval [0, 1]. Note that, in the general

form of Legendre wavelets, the dilation parameter is a = 2−j and the translation

parameter is b = n2j [11,12].
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2.3. Function Approximation. A given function f(x) with the domain [0, 1] can

be approximated by:

(8) f(x) =
∞∑

k=1

∞∑
m=0

ck,mψk,m(x) = CT ·Ψ(x),

If the infinite series in Equation (8) is truncated, then this equation can be written

as:

(9) f(x) '
2j−1∑

k=1

M−1∑
m=0

ck,mψk,m(x) = CT ·Ψ(x),

where C and Ψ are the matrices of size (2j−1M × 1).

C = [c1,0, c1,1, . . . , c1,M−1, c2,0, c2,1, . . . , c2,M−1, . . . , c2j−1,0, c2j−1,1, . . . , c2j−1,M−1]T ,

Ψ(x) = [ψ1,0, ψ1,1, . . . , ψ1,M−1, ψ2,0, ψ2,1, . . . , ψ2,M−1, . . . , ψ2j−1,0, ψ2j−1,1,

. . . , ψ2j−1,M−1]T .

2.4. Two Dimensional Case. The generalization of the method for two dimen-

sional problems is straightforward. For simplicity, a closed domain Ω = Ωx × Ωt is

considered where Ωx = [x1, x2] and Ωt = [t1, t2] and for each of the two dimensional

domains Ωx and Ωt a one-dimensional wavelet basis can be defined as {ψk,m1(x)}
and {ψk,mt(t)}.

For the clarity of presentation, the subscript x is used to denote that the wavelet

basis and all the parameters associated with it (ax0 , ax, jx, bx0 , bx, zx) are defined

for the domain Ωx. Thus, relation (5) can be written as:

(10) ax = a−jx
x0

, ax0 > 1 bx0 > 1

bx = kbx0
a−jx

x0
.

If there is a need to consider wavelet basis for another domain, a different subscript

should be used. For example, the subscript t is used for the domain Ωt = [t1, t2].

Thus, the two dimensional basis ψk,m1,m2(x, t) can be constructed as a combination

of two one-dimensional translation and a dilation of a truly two-dimensional wavelet

ψ(x, t). Consequently, a functional element of the two-dimensional wavelet basis

from the relation (6) can be written as:

(11) ψj,k1,k2(x, t) = |ax0 |
jx
2 ψ(ajx

x0
x− k1bx0)|at0 |

jt
2 ψ(ajt

t0t− k2bt0).



34 E. HESAMEDDINI AND S. SHEKARPAZ

Consequently, the following relation can be concluded:

{(bx0 , bt0)} = {bx0} × {bt0},

z = zx × zy.

Consider a function f(x, t) defind as a closed domain Ω and j = max{jx, jt},
therefore, f(x, t) can be approximated as:

(12) f(x, t) =
∞∑

k=1

∞∑
m1=0

∞∑
m2=0

ck,m1,m2ψk,m1,m2(x, t),

and the following relations between the sets of collocation points {(xj
i , t

j
k) : (i, k) ∈

Z} at different levels of resolution j (0 ≤ j ≤ J − 1) is satisfied :

{(xj
i , t

j
k} ⊂ {(xj+1

i , tj+1
k }.

Thus, for a given function, f(x, t) can be approximated by:

(13) f(x, t) =
2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2ψk,m1(x)ψk,m2(t),

where {ψk,m1(x)} and {ψk,m2(t)} were described in Section (2.2).

3. Legendre Wavelet Method for Solving the Klein-Gordon Equation

Consider the general form of Klein-Gordon equation in (1). Thus by representing

u(x, t) in terms of linear combination from Legendre wavelets, the following relations

can be presented:

u(x, t) =
2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2ψk,m1,m2(x, t)

(14) =
2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2ψk,m1(x)ψk,m2(t),

now by inserting u(x, t) in Equation (1), a system of the following equations is

resulted:
2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2ψk,m1(x)
d2

dt2
(ψk,m2(t))

−
2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2

d2

dx2
(ψk,m1(x))ψk,m2(t)
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(15) +b1(
2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2ψk,m1(x)ψk,m2(t)) + b2g(u) = f(x, t),

under the following conditions:

(16)
2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2ψk,m1(x)ψk,m2(0) = a0(x),

(17)
2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2ψk,m1(x)
d

dt
(ψk,m2(t))|t=0 = a1(x),

where g(u) and f(x, t) may be approximated as:

(18) g(u) =
2j−1∑

k=1

M−1∑

m
′
1=0

M−1∑

m
′
2=0

dk,m
′
1,m

′
2
ψk,m

′
1,m

′
2
(x, t),

(19) f(x, t) =
2j−1∑

k=1

M−1∑

m”
1=0

M−1∑

m”
2=0

ek,m”
1,m”

2
ψk,m”

1,m”
2
(x, t).

Therefore, by choosing the arbitrary values of M and j, the coefficients of the

solutions to the Klein-Gordon Equation are computed. At the final step, the ap-

proximate solutions of this equation are evaluated by inserting the values of ck,m1,m2

in (15).

3.1. Solving the Linear Homogeneous Klein-Gordon Equation. First, the

Legendre wavelet method is described for solving the linear Klein-Gordon Equation,

(20) utt − uxx = u,

by being subject to the initial conditions:

(21) u(x, 0) = 1 + sin(x), ut(x, 0) = 0.

By using this method, the collocation points for the domain Ωx = [0, 3] and

Ωt = [0, 1] are x = x[i] (i = 1, 2, . . . , n) and t = t[i′] (i′ = 1, 2, . . . , n′), such that:

(22) u(x, t) =
2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2ψk,m1,m2(x, t),
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thus, one has:

2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2

∂2

∂t2
(ψk,m1,m2(x

j
i , t

j
i′))−

2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2

∂2

∂x2
(ψk,m1,m2(x

j
i , t

j
i′))

=
2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2ψk,m1,m2(x
j
i , t

j
i′),

and the initial conditions are in the following form:

2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2ψk,m1,m2(x
j
i , 0) = 1 + sin(xj

i ),

2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2

∂

∂t
(ψk,m1,m2(x

j
i , t))|t=0 = 0.

By substituting the collocation points, n = 30, n
′
= 20 and M = 3, j = 1 in the

above relations, the numerical results are evaluated. These results are presented in

Tables (1) and (2).

3.2. Solving the Linear Non-Homogeneous Klein-Gordon Equation. Con-

sider linear non-homogeneous Klein-Gordon equation,

(23) utt − uxx − 2u = −2sin(x)sin(t),

with the initial conditions

(24) u(x, 0) = 0, ut(x, 0) = sin(x).

By inserting Eq.(14) in the Eq.(23), a system of nonlinear equations is resulted:

2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2

∂2

∂t2
(ψk,m1,m2(x, t))−

2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2

∂2

∂x2
(ψk,m1,m2(x, t))

−2(
2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2ψk,m1,m2(x, t)) = −2sin(x)sin(t),
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with the initial conditions,

2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2ψk,m1,m2(x, 0) = 0,

2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2

∂

∂t
(ψk,m1,m2(x, t))|t=0 = sin(x),

where x = x[i] (i = 1, 2, . . . , n) and t = t[i′] (i′ = 1, 2, . . . , n′). Similar to the ho-

mogeneous case, numerical results are calculated. Then, the approximate solutions

are shown in Tables (3) and (4).

3.3. Solving the Non-Linear Non-Homogeneous Klein-Gordon Equation.

Finally, we consider the non-Linear non-homogeneous Klein-Gordon equation

(25) utt − uxx + u2 = −xcos(t) + x2cos2(t),

subject to the initial conditions

(26) u(x, 0) = x, ut(x, 0) = 0.

Similar to the above two examples, we can rewrite(25) as follows;

2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2

∂2

∂t2
(ψk,m1,m2(x, t))−

2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2

∂2

∂x2
(ψk,m1,m2(x, t))

+(
2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2ψk,m1,m2(x, t))2 = −xcos(t) + x2cos2(t),

and;
2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2ψk,m1,m2(x, 0) = x,

2j−1∑

k=1

M−1∑
m1=0

M−1∑
m2=0

ck,m1,m2

∂

∂t
(ψk,m1,m2(x, t))|t=0 = 0,

where x = x[i] (i = 1, 2, . . . , n) and t = t[i′] (i′ = 1, 2, . . . , n′). The numerical results

for this example are shown in Tables (5) and (6).
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4. Numerical Results

In this section, the results of numerical experiments computed for the approx-

imations of the solutions for the Klein-Gordon Equations are presented. In each

problem, the different values for j and M are considered. Thus by setting these

values, the best approximations are obtained.

x The values of u(x) obtained The values of u(x) obtained

by the analytic method by the wavelet method

0 1.000038077 1.000038078

0.2 1.003528728 1.003528890

0.4 1.007019337 1.007018559

0.6 1.010509861 1.010512672

0.8 1.014000257 1.014001910

1 1.017490483 1.017491874

1.2 1.020980497 1.020981756

1.4 1.024470255 1.024471470

1.6 1.027959716 1.027960992

1.8 1.031448836 1.031450311

2 1.034937574 1.034939422

2.2 1.038425886 1.038428329

2.4 1.041913731 1.041917024

2.6 1.045401065 1.045405508

2.8 1.048887847 1.048893785

3 1.052374033 1.052381848

Table 1. The values of u(x) for equation (20) with t = 0.5.
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x The values of u(x) obtained The values of u(x) obtained

by the analytic method by the wavelet method

0 1.000013708 1.000013708

0.2 1.003504359 1.003504707

0.4 1.006994968 1.006995322

0.6 1.010485492 1.010485894

0.8 1.013975888 1.013976217

1 1.017466114 1.017466329

1.2 1.020956128 1.020956221

1.4 1.024445886 1.024445904

1.6 1.027935347 1.027935371

1.8 1.031424467 1.031424628

2 1.034913205 1.034913672

2.2 1.038401517 1.038402499

2.4 1.041889362 1.041891117

2.6 1.045376696 1.045379519

2.8 1.048863478 1.048867711

3 1.052349664 1.052355690

Table 2. The values of u(x) for equation (20) with t = 0.3.
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x The values of u(x) obtained The values of u(x) obtained

by the analytic method by the wavelet method

0 0 0

0.2 0.00003046129349 0.3046168223e-4

0.4 0.6092221583e-4 0.6092299520e-4

0.6 0.00009138239578 0.9138355165e-4

0.8 0.0001218414624 0.0001218430009

1 0.0001522990444 0.1523009752e-3

1.2 0.1827547706e-3 0.0001827570851

1.4 0.2132082700e-3 0.2132109814e-3

1.6 0.2436591716e-3 0.0002436622556

1.8 0.0002741071042 0.2741105826e-3

2 0.0003045516969 0.0003045555471

2.2 0.0003349925787 0.3349968378e-3

2.4 0.3654293788e-3 0.3654340152e-3

2.6 0.3958617262e-3 0.3958667460e-3

2.8 0.4262892505e-3 0.0004262946345

3 0.4567115802e-3 0.4567173835e-3

Table 3. The values of u(x) for equation (23) with t = 0.5.
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x The values of u(x) obtained The values of u(x) obtained

by the analytic method by the wavelet method

0 0 0

0.2 0.0000182769256 0.00001827700809

0.4 0.00003655362643 0.00003655379464

0.6 0.000054829688287 0.00005483013328

0.8 0.00007310547129 0.00007310580701

1 0.00009138016892 0.00009138059107

1.2 0.0001096537531 0.0001096542571

1.4 0.0001279260012 0.0001279265866

1.6 0.0001461966905 0.0001461973541

1.8 0.0001644655985 0.0001644663547

2 0.000182732502 0.0001827333406

2.2 0.0002009971800 0.0002009981034

2.4 0.0002192594088 0.0002192604240

2.6 0.0002375189652 0.0002375200530

2.8 0.0002649028045 0.0002557768006

3 0.0002740291741 0.0002740304272

table 4. The values of u(x) for equation (23) with t = 0.3.



42 E. HESAMEDDINI AND S. SHEKARPAZ

x The values of u(x) obtained The values of u(x) obtained

by the analytic method by the wavelet method

0 0 0.00006928203230

0.2 0.1999695390 0.2000415692

0.4 0.3999390781 0.4000138564

0.6 0.5999086171 0.5999861436

0.8 0.7998781562 0.7999584309

1 0.9998476952 0.9999307178

1.2 1.199817234 1.199903005

1.4 1.399786773 1.399875292

1.6 1.599756312 1.599847580

1.8 1.799725851 1.799819865

2 1.999695390 1.999792151

2.2 2.199664929 2.199764437

2.4 2.399634468 2.399736727

2.6 2.599604008 2.599709025

2.8 2.799573547 2.799681278

3 2.999543086 2.999653582

Table 5. The values of u(x) for equation (25) with t = 1.
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x The values of u(x) obtained The values of u(x) obtained

by the analytic method by the wavelet method

0 0 0

0.2 0.1999972584 0.2000000000

0.4 0.3999945169 0.4000000000

0.6 0.5999917753 0.6000000000

0.8 0.7999890338 0.8000000000

1 0.9999862922 1.000000000

1.2 1.199983551 1.2000000000

1.4 1.399980809 1.4000000001

1.6 1.599978068 1.600000002

1.8 1.799975326 1.799999999

2 1.999972584 1.999999997

2.2 2.199969843 2.199999996

2.4 2.399967101 2.399999992

2.6 2.599964360 2.600000000

2.8 2.799961618 2.799999999

3 2.999958877 2.999999969

table 6. The values of u(x) for equation (25) with t = 0.3.

5. Conclusions

Several numerical methods are used for solving the Klein-Gordon equation such

as, ADM, VIM, HPM and HAM. In this paper, an approach which was composed

of wavelet collocation method and Legendre wavelets was presented.

The Legendre wavelets were used for transforming the partial differential Equa-

tion (1) to a system of equations in terms of wavelets. In other words, The approx-

imations were expressed in terms of bases functions.

In the Legendre wavelet method, the bases of Legendre wavelets were polyno-

mials. Thus, the computations were preformed slowly. Also, these wavelets were

continuous and orthonormal bases functions with compactly support[5,11]. Because
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of these properties, the Legendre wavelets were implemented and the best approx-

imation of the solutions was computed. Numerical results indicated (expressed)

the efficiency and accuracy of the proposed method in comparison with the other

methods.
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