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Abstract. In this paper we wish to investigate right top spaces [1]. It is

proved that if T is a right Rees matrix with the Lie algebra τ then (a) given

a Lie subalgebra h of τ there exists a sub top space of T with the Lie algebra

h, (b) given a morphism of Lie algebras ψ : g → τ and t ∈ T , where g

is the Lie algebra of a simply connected Lie group G, there exists a unique

homomorphism ϕ : G → T such that ϕ(e) = e(t) and (ϕ)∗ = ψ. Finally

exponential map for right Rees matrixes is defined.
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1. Introduction

The notion of top space as a generalization of Lie group is considered in [2]. Let

us recall its definition.

Definition 1.1. A top space T is a smooth manifold admitting an operation called

multiplication, subject to the set of rules given below:

• (xy)z = x(yz) for all x, y, z ∈ T ;
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• For each x ∈ T there exists a unique z ∈ T such that xz = zx = x (we

denote z by e(x));

• For each x ∈ T there exists y ∈ T such that xy = yx = e(x) (we denote y

by x−1);

• The mapping m1 : T → T is defined by m1(x) = x−1 and the mapping

m2 : T × T → T is defined by m2(x, y) = xy are smooth maps;

• e(xy) = e(x)e(y) for all x, y ∈ T .

The reader can see [3], [4], [5] for recent works on top spaces.

We also recall that the map lg : T → T (rg : T → T ) defined by lg(x) = gx

(rg(x) = xg) is called left (right) translation by g. Left and right translations in

Lie groups are diffeomprphism but top spaces don’t have this property in general.

The following theorem implies that if there is g ∈ T that Tg = T then rg is

diffeomorphism, for all g ∈ T . In particular re(g) = Id, for all g ∈ T .

Theorem 1.2.[2] If Tg ∩ Th 6= ∅, then Tg = Th, where g, h ∈ T .

Definition 1.3.[1] A top space T is called a right top space if there is g ∈ T that

Tg = T .

A vector field X on a top space T is a left invariant vector field if (lg)∗(X) = X,

for all g ∈ T . In addition a form ω on T is left invariant if (lg)∗ω = ω.

There are right top spaces with infinite number of identities.

Example 1.4.[2] The n- dimensional torus Tn = Rn/Zn with the product

((a1, a2, ..., an)+Zn, (b1, b2, ..., bn)+Zn) = (a1+b1, a2+b2, ..., an−1+bn−1, an)+Zn

is a top space. e((a1, a2, ..., an) + Zn) = (0, 0, ..., an) + Zn. Hence Tn has infinite

number of identities. In addition Tna = Tn, for all a ∈ Tn.

Example 1.5. Suppose that G is a lie group and two smooth manifolds Λ and I

are given. If p : I × Λ → G is a smooth mapping, then M(G, Λ, I, p) = Λ ×G × I

with the product (λ, g, i)(λ1, g1, i1) = (λ, gp(i, λ1)g1, i1) is a top space, which is

called Rees Matrix. Suppose that I is a one point set then Λ×G× I ' Λ×G is a

right top space which we call right Rees matrix. In addition e((λ, g)) = (λ, p(λ)−1)

and consequently card(e(Λ×G)) = card(Λ).

Definition 1.6. (H, ϕ) is a sub top space of the top space T if

• H is a top space;

• (H, ϕ) is a submanifold of T ;
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• ϕ : H → T is a homomorphism.

Example 1.7. (e(Tn), i) in example 1.4 is a sub top space. ({λ} × G, i) in the

right Rees matrix M(G,Λ, p) is a sub top space too.

By Ado’s theorem any finite dimensional Lie algebra is isomorphic to the Lie

algebra of a Lie group. Left invariant vector fields of a right top space form a Lie

algebra [1]. The following theorem shows that in a class of right top spaces this Lie

algebra is isomorphic to the Lie algebra of a sub top space which is a Lie group too.

Theorem 1.8.[1] Let T be a right top space. If for t ∈ e(T ), tT has a manifold

structure which makes (tT, i) an imbedding then:

• gT is a Lie group and is diffeomorphic to tT , for every g ∈ T ;

• There is a one to one correspondence between left invariant vector fields of

T and tT .

2. Preliminaries

The following notions and theorems are applied in section 3.

Let M be a smooth manifold. We denote the set of all differential forms by

E∗(M). An ideal I ⊂ E∗(M), is called a differential ideal if it is closed under

exterior differentiation.

Theorem 2.1.[6] Let N and M be differentiable manifolds, and let π1 and π2 be

the canonical projections of N×M on to N and M respectively. Suppose that there

exists a basis {ωi, i = 1, ....d} for the 1- forms on M . If {αi : i = 1, ..., d} are 1-

forms on N and if the ideal of forms on N×M generated by {(π1)∗(αi)−(π2)∗(ωi) :

i = 1, ..., d} is a differential ideal, then given n0 ∈ N and m0 ∈ M there exists a

neighborhood U of n0 and a C∞ map f : U → M such that f(n0) = m0 and

f∗(ωi) = αi|U for i = 1, ..., d. Moreover, if U is any connected open set containing

n0 for which there exists a C∞ map f : U → M satisfying both f(n0) = m0 and

f∗(ωi) = αi|U , then there exists a unique such map on U .

Sketch of proof. Since {(π1)∗(αi)− (π2)∗(ωi) : i = 1, ..., d} is a differential ideal

it has an integral manifold, I, through (n0,m0). dπ1|Ip, for p ∈ I is nonsingular

and consequently it is a local diffeomorphism. Hence there are open neighborhoods

V ⊆ I of (n0,m0) and U ⊆ N of n0 that π1 : V → U is a diffeomorphism. The

function f = π2 ◦ (π1|V )−1 is the desired map.
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Remark 2.2. Using homomorphisms from a Lie group to a right top space one can

construct a differential ideal. Let ϕ : G → T be a homomorphism of the Lie group

G to the right top space T that ϕ(e) = t for some t ∈ e(T ) and {ωi, i = 1, ....d} be a

basis for the space of left invariant 1- forms on T . The pull back of a left invariant

form on T is a left invariant form on G. Let π1 and π2 be the canonical projection

of G×T on to G and T respectively. The ideal I of left invariant one forms on G×T

generated by the collection of independent one forms {π∗1ϕ∗(ωi)−π∗2(ωi), i = 1, . . . d}
is a differential ideal. The proof is similar to the case that T is a Lie group [6].

In addition if ψ : g → τ is a homomorphism of Lie algebras then it has a transpose

ψ∗. Let {ωi, i = 1, . . . , d} be a basis of the space of left invariant 1- forms on

T . The ideal generated by the collection of independent left invariant one forms

{π∗1ψ∗(ωi)− π∗2(ωi), i = 1, . . . d} is a differential ideal [6].

3. Homomorphisms from a Lie group to a right top space

In this section we generalize main theorems in Lie group theory. One of these

theorems is as follows.

Theorem 3.1.[6] Let G be a Lie group with Lie algebra g, and let h̃ ⊆ g be a

subalgebra. Then there is a unique connected Lie subgroup (H, ϕ) of G such that

dϕ(h) = h̃.

Sketch of proof. We define a distribution D on G by setting D(g) = {X(g) :

X ∈ h̃}, for any g ∈ G. This distribution is smooth and involutive and its maximal

integral manifold through e is the desired Lie subgroup.

Lemma 3.2. Let T be a right top space that tT , for some t ∈ e(T ), and e(T ) are

embedded in T . Then T is diffeomorphic with a right Rees matrix.

Proof. tT is a Lie group by using theorem 1.8. Let p : e(T ) → tT be the

constant map, p(s) = t for every s ∈ e(T ). We prove that the right Rees matrix

M(tT, e(T ), p) is diffeomorphic with T . Let α : T → e(T )× tT be the map α(g) =

(e(g), tg) for every g ∈ T . Since β : e(T )× tT → T , β(s, tg) = stg is the inverse of

α it is injective and surjective. α and β are smooth since the functions e and lt are

smooth and e(T ) and tT are imbedded in T . In addition α(gg′) = α(g)α(g′).

Theorem 3.3. Let M(G, Λ, p) be a right Rees matrix with the Lie algebra τ

and D be a distribution defined by setting D(r) = {X(r) : X ∈ κ}, for every

r ∈ M(G, Λ, p). If t ∈ e(M(G, Λ, p)) then for every subalgebra κ ⊆ τ :
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• There is a connected sub top space (H, ϕ) of M(G, Λ, p) which is also a Lie

group with identity t, such that dϕ(h) = κ;

• (H, ϕ) is the maximal connected integral manifold of the distribution D

through t.

Proof. Since t ∈ e((G, Λ, p)), t = (i, p(i)−1), for some i ∈ Λ. (i, p(i)−1)(Λ×G) =

{i}×G is a Lie group and theorem 1.8 implies that its Lie algebra is τ . By theorem

3.1 for every subalgebra κ of τ there is a Lie subgroup, (ψ,K), of {i} ×G that its

Lie algebra is κ. This Lie subgroup is also a sub top space of M(G, Λ, p) and by

the proof of theorem 3.1 is the maximal integral manifold of D through (i, p(i)−1)

in {i} ×G.

Now let (H,ϕ) be the maximal integral manifold of D through (i, p(i)−1) in

M(G, Λ, p). By pervious part ψ(K) ⊆ ϕ(H). If there is (j, g) ∈ ϕ(H) − ψ(K)

then (j, g) is not in {i} × G, for if (j, g) ∈ {i} × G then l(j,g)−1 ◦ ψ(K) is an

integral manifold of D through (i, p(i)−1) in {i} × G. Hence by maximality of

(ψ, K), l(j,g)−1 ◦ ψ(K) ⊆ ψ(K) and consequently (j, g)−1 ∈ ψ(K). Since ψ(K)

is a Lie group (j, g) ∈ ψ(K) which is a contradiction with the fact that (j, g) ∈
ϕ(H) − ψ(K). Hence e((j, g)) 6= (i, p(i)−1) and consequently i 6= j. There is a

piecewise smooth curve γ = (γ1, γ2) from (i, p(i)−1) to (j, g). Since γ1 is not a

single point there is s ∈ R that the tangent vector to γ(s) has tangent element in

Λ. Hence dim(ϕ(H)) > dim(D) which is a contradiction.

Corollary 3.4.[6] Suppose that the ideal I generated by a collection

{ω1, ω2, ..., ωc−d} of independent left invariant 1- forms on the right Rees matrix

M(G, Λ, p) is a differential ideal. Then the maximal connected integral manifold of

I through t ∈ e(M(G,Λ, p)) is a sub top space of M(G, Λ, p) which is also a Lie

group.

Theorem 3.5. Let G be a connected Lie group, T a right top space, and ϕ and

ψ homomorphisms of G into T . If ψ(e) = ϕ(e) = e(t) and (ϕ)∗ = (ψ)∗ then ϕ = ψ.

Proof. Since (ϕ)∗ = (ψ)∗ the transpose of ψ and ϕ are identical. In addition

ψ(e) = ϕ(e) = e(t). Let {ωi, i = 1, ....d} be a basis for the space of left invariant

1- forms on T . By using remark 2.2, the ideal of forms on G× T generated by the

one forms {π∗1ϕ∗(ωi) − π∗2(ωi), i = 1, . . . d} is a differential ideal. It follows from

theorem 2.1 that ψ = ϕ.
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Theorem 3.6.[6] Let G and H be connected Lie groups, and let ϕ : G → H be

a homomorphism. Then ϕ is a covering map if and only if dϕ : Ge → He be an

isomorphism.

Theorem 3.7. Let H be a simply connected Lie group with Lie algebra h and

M(G, Λ, p) be a right Rees matrix with Lie algebra τ . If ψ : g → τ be a ho-

momorphism of Lie algebras then for every t ∈ M(G, Λ, p), there exists a unique

homomorphism ϕ : H → M(G, Λ, p) such that ϕ(e) = e(t) and (ϕ)∗ = ψ.

Proof. Uniqueness follows from theorem 3.5. Let {ωi, i = 1, . . . d} be a basis

of left invariant one forms on M(G,Λ, p), and ψ∗ be the transpose of ψ. Then

the ideal J generated by the collection of independent left invariant one forms

{π∗1ψ∗(ωi)− π∗2(ωi), i = 1, . . . d} is a differential ideal by remark 2.2. According to

the corollary 3.4 the maximal connected integral manifold I of J through (e, e(t))

is a sub top space of H × M(G, Λ, p) which is also a Lie group. By the proof

of theorem 2.1, π1 | I : I → H is nonsingular and by theorem 3.6, π1 | I is a

covering homomorphism. Sine H is simply connected and π1|I is a covering it is

a homeomorphism. By inverse function theorem π1 | I is an isomorphism. We

define ϕ = π2 ◦ (π1 | I)−1. ϕ is a homomorphism and according to the theorem 2.1,

ϕ∗(ωi) = ψ∗(ωi).

Theorem 3.8. Let T be a connected right top space, and let U be an open

neighborhood of e(T ). Then T =
⋃∞

n=1 Un.

Proof. Let V be an open subset of U containing e(T ) such that V = V −1.

H =
⋃

V n is a sub generalized group of T (note that if a, b ∈ V then (ab)−1 =

e(a)b−1a−1e(b) ∈ V 4). If a ∈ H then V a is an open neighborhood of a containing

in H, since ra is an open map. Hence H is open. In addition H is the complement

of the disjoint union of all cosets mod H different from H itself, and consequently

H is closed. Since T is connected, T = H.

4. Exponential map of right Rees matrixes

In this section we define exponential map for right Rees matrixes.

Definition 4.1. Let M(G, Λ, p) be a right Rees matrix with the Lie algebra τ .

Then expt : τ → M(G,Λ, p), for t ∈ M(G, Λ, p), is defined by expt(X) = expX
t (1),

where expX
t is the one parameter group of X which contains t.
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Remark 4.2. Note that by theorem 1.8 one parameter groups of M(G, Λ, p) that

contain t are subset of tM(G,Λ, p), expt(τ) ⊆ tM(G, Λ, p). tM(G, Λ, p) is a Lie

group with identity t and is embedded in M(G, Λ, p). This implies the following

theorem on right Rees matrixes.

Theorem 4.2. Let M(G, Λ, p) be a right Rees matrix with Lie algebra τ . If X

belongs to τ then:

• expt(sX) = expX
t (s);

• expt((t1 + t2)X) = (expt(t1X))(expt(t2X));

• expt(−tX) = (expt(tX))−1;

• lg ◦ expX
t is the unique integral curve of X which takes the value g at 0;

• exp is a smooth map.

Example 4.3. Let M(Gl(n,R), Λ, p) be a right Rees matrix that Gl(n,R) is the set

of n× n non singular matrixes and p : Λ → Gl(n,R) is the constant map p(λ) = I,

for every λ ∈ Λ where I is the identity element of Gl(n,R). Using theorem 1.8, the

Lie algebra of M(Gl(n,R), Λ, p) and (λ, p(λ)−1)M(Gl(n,R),Λ, p) = {λ}×Gl(n,R)

are the same. In addition Gl(n, R) and {λ} × Gl(n,R) are Lie group isomorphic.

Hence the Lie algebra of {λ}×Gl(n,R) is gl(n,R), the set of n×n matrixes, and one

parameter groups of M(G, Λ, p) which contains (λ, p(λ)−1) are t 7→ (λ, etA), that

eA = I + A + A2

2! + A3

3! + . . . . Consequently exp(λ,p(λ)−1) : gl(n,R) → Λ×Gl(n,R)

is exp(A) = (λ, eA), for every A ∈ gl(n,R).
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