APPROXIMATELY INNER σ - DYNAMICS ON C^* - ALGEBRAS

¹M. MOSADEQ, ¹M.HASSANI, AND ²A. NIKNAM

¹DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES, MASHHAD BRANCH ISLAMIC AZAD UNIVERSITY, MASHHAD, IRAN MOSADEQ@MSHDIAU.AC.IR HASSANI@MSHDIAU.AC.IR

²DEPARTMENT OF MATHEMATICS AND CENTER OF EXCELLENCE IN ANALYSIS ON ALGEBRAIC STRUCTURES(CEAAS), FERDOWSI UNIVERSITY, MASHHAD, IRAN

ABSTRACT. Let D be a *- subalgebra of C^*- algebra \mathcal{A} and $\sigma: D \to \mathcal{A}$ be a linear operator. In this paper we introduce the notions of (approximately inner) $\sigma-$ derivations and (approximately inner) $\sigma-$ dynamics on C^*- algebras and present several results concerning on the approximately innerness of such dynamics. In particular we prove that if $\{\varphi_t\}_{t\in R}$ is a $\sigma-$ dynamics on the C^*- algebra \mathcal{A} satisfying $\|\varphi_t\| \leq 2 \|\sigma\| + 1$ and there exists a core D_0 for the generator d of $\{\varphi_t\}_{t\in R}$ such that d (as a $\sigma-$ derivation) is approximately inner on D_0 , then $\{\varphi_t\}_{t\in R}$ is an approximately inner $\sigma-$ dynamics.

AMS Classification: 47D03, 46L57, 16W20.

Keywords: (inner) σ – derivation; (inner) σ – endomorphism; Approximately inner $C^* - (\sigma -)$ dynamics.

1. INTRODUCTION

Throughout the paper D is a *- subalgebra of C^*- algebra \mathcal{A} and $\sigma: D \to \mathcal{A}$ is a *- linear operator. Also \mathcal{N} be considered as the set of all natural numbers.

JOURNAL OF MAHANI MATHEMATICAL RESEARCH CENTER VOL. 1, NUMBER 1 (2012) 55-63. ©MAHANI MATHEMATICAL RESEARCH CENTER

⁵⁵

A one parameter group $\{\varphi_t\}_{t\in R}$ of bounded linear operators on \mathcal{A} is a mapping $\varphi: R \to \mathbf{B}(\mathcal{A})$ from the additive group R of real numbers into the set $\mathbf{B}(\mathcal{A})$ of all bounded linear operators on \mathcal{A} with the following properties:

(i) $\varphi_0 := I$ the identity operator on \mathcal{A} , and

(ii) $\varphi_{t+s} := \varphi_t \varphi_s$, for all $t, s \in R$.

A one parameter group $\{\varphi_t\}_{t\in R}$ is called uniformly (strongly) continuous if

 $\varphi: R \to \mathbf{B}(\mathcal{A})$ is continuous with respect to norm (strong) operator topology. A strongly continuous group of bounded linear operators on \mathcal{A} is called a group of class C_0- or simply a C_0- group. We define the infinitesimal generator d of φ as a mapping $d: D(d) \subseteq \mathcal{A} \to \mathcal{A}$ such that $d(a) = \lim_{t\to 0} \frac{\varphi_t(a) - a}{t}$ where $D(d) = \{a \in \mathcal{A} :$ $\lim_{t\to 0} \frac{\varphi_t(a) - a}{t} exists\}$. Also we define the resolvent set $\rho(d)$ to be the set of all complex number λ for which $\lambda I - d$ is invertible, [9].

A *- automorphism on \mathcal{A} is an invertible linear operator $\varphi : \mathcal{A} \to \mathcal{A}$ such that $\varphi(ab) = \varphi(a)\varphi(b)$ and $\varphi(a^*) = \varphi(a)^*$, for all $a, b \in \mathcal{A}$. An automorphism φ on \mathcal{A} is called inner if there exists a unitary element $u \in \mathcal{A}$ such that $\varphi(a) = uau^*$. We denote by $aut(\mathcal{A})$ the set of all *- automorphisms on \mathcal{A} .

Let G be a locally compact group and $t \to \varphi_t$ $(t \in G)$ be a norm continuous group homomorphism of G into $aut(\mathcal{A})$. Then the triple $\{\mathcal{A}, G, \varphi\}$ is called uniformly continuous C^* - dynamical system. In the case of G = R, as in quantum field theory, we call a one parameter group $\{\varphi_t\}_{t\in R}$ of *- automorphisms on \mathcal{A} a C^* - dynamics. It is easy to check that if $\{\varphi_t\}_{t\in R}$ is a group of *- automorphisms with the infinitesimal generator d, then d is a *- derivation and conversely if d is a bounded *derivation on the C^* - algebra \mathcal{A} , then d induces a uniformly continuous group of *- automorphisms $\{e^{td}\}_{t\in R}$. In particular, if h is a self adjoint element in the C^* algebra \mathcal{A} , then by Stone's theorem *ih* is the infinitesimal generator of a uniformly continuous group $\{u_t\}_{t\in R}$ of unitaries in \mathcal{A} , such that $u_t = e^{ith}$ and d(a) = i[h, a], where [h, a] = ha - ah, is an inner derivation which is infinitesimal generator of the uniformly continuous group of inner *- automorphisms $\{u_tau_t^*\}_{t\in R}$. Conversely each uniformly continuous group $\{\varphi_t\}_{t\in R}$ of the form $\varphi_t(a) = e^{ith}ae^{-ith}$ of inner *- automorphisms has an inner derivation as its infinitesimal generator.

A one parameter group of *- automorphisms $\{\varphi_t\}_{t\in R}$ on the C^*- algebra \mathcal{A} is said to be approximately inner if there exists a sequence $\{h_n\}$ of self adjoint elements in \mathcal{A} such that for each $t \in R$, $\varphi_t = s - \lim_{n \to \infty} \varphi_{n,t}$, where $\varphi_{n,t}(a) = e^{ih_n t} a e^{-ih_n t}$

56

which means for each $t \in R$ and $a \in A$, $\|\varphi_{n,t}(a) - \varphi_t(a)\| \to 0$ uniformly on every compact subset of R, [10].

Now let $\sigma : \mathcal{A} \to \mathcal{A}$ be a linear operator. By a σ - endomorphism we mean a linear mapping $\varphi : \mathcal{A} \to \mathcal{A}$ such that $(\varphi + \sigma - I)(ab) - (\varphi + \sigma - I)(a)(\varphi + \sigma - I)(b) = \sigma(ab) - \sigma(a)\sigma(b)$, for all $a, b \in \mathcal{A}$. In order to construct a σ - endomorphism suppose that u is a unitary element of \mathcal{A} satisfying $u(\sigma(ab) - \sigma(a)\sigma(b)) = (\sigma(ab) - \sigma(a)\sigma(b)) u$. Then the mapping $\varphi : \mathcal{A} \to \mathcal{A}$ defined by $\varphi(a) = u\sigma(a)u^* - \sigma(a) + a$ is a σ - endomorphism which is called inner. Note that if σ is an endomorphism, then u can be any arbitrary unitary element of \mathcal{A} .

Let $\{\varphi_t\}_{t\in R}$ be a uniformly continuous one parameter group of bounded linear operators on \mathcal{A} . Following [7], we call $\{\varphi_t\}_{t\in R}$ a σ - dynamics on the C^* - algebra \mathcal{A} (or briefly $C^* - \sigma$ - dynamics) if additionally φ_t 's are σ - endomorphisms.

A linear mapping $d: D \to \mathcal{A}$ is called a σ - derivation if $d(ab) = d(a)\sigma(b) + \sigma(a)d(b)$, for all $a, b \in D$. (see [4], [5], [6], [7] and references therein.) The infinitesimal generator of $* - \sigma$ - dynamics is an everywhere defined $* - \sigma$ - derivation, [7].

In this paper we introduce the notions of (approximately inner) σ - derivations and (approximately inner) σ - dynamics on C^* - algebras and present several results concerning on the approximately innerness of such dynamics. In particular we prove that if $\{\varphi_t\}_{t\in R}$ is a σ - dynamics on the C^* - algebra \mathcal{A} satisfying $\| \varphi_t \| \leq 2 \| \sigma \| + 1$ and there exists a core D_0 for the generator d of $\{\varphi_t\}_{t\in R}$ such that d (as a σ derivation) is approximately inner on D_0 , then $\{\varphi_t\}_{t\in R}$ is an approximately inner σ - dynamics.

The reader is referred to [1],[3] and [8] for more details on $\text{Banach}(C^*-)$ algebras and to [2] and [10] for more information on dynamical systems.

2. Preliminaries

Definition 2.1 A linear mapping $d: D \to \mathcal{A}$ is called a σ - derivation if

$$d(ab) = d(a)\sigma(b) + \sigma(a)d(b)$$

(for all $a, b \in D$)

Example 2.2 Let σ be an arbitrary linear mapping on D and suppose that h is a self adjoint element of \mathcal{A} satisfying $h(\sigma(ab) - \sigma(a)\sigma(b)) = (\sigma(ab) - \sigma(a)\sigma(b))h$, for all $a, b \in D$. Then the mapping d_h^{σ} defined by $d_h^{\sigma}(a) = i[h, \sigma(a)]$ is a $* - \sigma -$ derivation which is called *inner*. Note that if σ is an endomorphism, then h can be any arbitrary self adjoint element of \mathcal{A} .

Definition 2.3 Let $\sigma : \mathcal{A} \to \mathcal{A}$ be a linear mapping. A linear mapping $\varphi : \mathcal{A} \to \mathcal{A}$ is called σ - *endomorphism* if for all $a, b \in \mathcal{A}$

$$(\varphi + \sigma - I)(ab) - (\varphi + \sigma - I)(a)(\varphi + \sigma - I)(b) = \sigma(ab) - \sigma(a)\sigma(b).$$

Example 2.4 Let A and B be C^* – algebras. Then $A \times B$ is also a C^* – algebra by regarding the following structure:

(i) (a,b) + (c,d) = (a+c,b+d)

- (ii) $\lambda(a,b) = (\lambda a, \lambda b)$
- (iii) $(a,b).(c,d) = (ac,bd), (a,b)^* = (a^*,b^*)$
- (iv) $|| (a, b) || = \max\{|| a ||, || b ||\}$

Now define the maps φ and σ as follows:

- $\varphi(a,b) = (2a,b)$
- $\sigma(a,b) = (0,b)$

then φ is a $* - \sigma$ - endomorphism.

Definition 2.5 A linear mapping $\varphi : \mathcal{A} \to \mathcal{A}$ is called an *inner* σ - *endomorphism* if there exist a unitary element $u \in \mathcal{A}$ such that for each $a, b \in \mathcal{A}$

$$(\mathbf{i})(\varphi + \sigma - I)(a) = u\sigma(a)u$$

(ii) $u(\sigma(ab) - \sigma(a)\sigma(b)) = (\sigma(ab) - \sigma(a)\sigma(b))u$

Example 2.6 Let $\sigma : \mathcal{A} \to \mathcal{A}$ be an arbitrary *- linear endomorphism and h be a self adjoint element of \mathcal{A} . Then the mapping $\varphi : \mathcal{A} \to \mathcal{A}$ given by $\varphi(a) = e^{ih}\sigma(a)e^{-ih} - \sigma(a) + a$ is an inner $*-\sigma-$ endomorphism.

Definition 2.7 Let $\{\varphi_t\}_{t\in R}$ be a one parameter group of bounded linear operators on \mathcal{A} such that for each $t \in R$, φ_t is a σ - endomorphism. If moreover, $\{\varphi_t\}_{t\in R}$ is uniformly continuous, then it is called a σ - dynamics on the C^* - algebra \mathcal{A} (or briefly $C^* - \sigma$ - dynamics). We define the *infinitesimal generator* d of φ as a mapping $d: D(d) \subseteq \mathcal{A} \to \mathcal{A}$ such that $d(a) = \lim_{t \to 0} \frac{\varphi_t(a) - a}{t}$ where $D(d) = \{a \in \mathcal{A} : \lim_{t \to 0} \frac{\varphi_t(a) - a}{t} exists\}.$

Remark 2.8 (i) Let $\sigma : \mathcal{A} \to \mathcal{A}$ be a *- endomorphism, $\{u_t\}_{t \in R}$ be a uniformly continuous one parameter group of unitary elements of \mathcal{A} and let $\varphi_t : \mathcal{A} \to \mathcal{A}$ be the uniformly continuous one parameter group $\varphi_t(a) = u_t \sigma(a) u_t^* - \sigma(a) + a$ of inner *- σ - endomorphisms. Applying Stone's theorem [9], there is a self adjoint element $h \in \mathcal{A}$ such that $u_t = e^{ith}$. Therefore the inner *- σ - derivation $d_h^{\sigma}(a) = i[h, \sigma(a)]$ is the generator of $\{\varphi_t\}_{t \in R}$, [7].

(ii) Let h be a self adjoint element in the C^* - algebra $\mathcal{A}, \sigma : \mathcal{A} \to \mathcal{A}$ be an idempotent bounded *- linear operator and $d_h^{\sigma} : \mathcal{A} \to \mathcal{A}$ be the inner $* - \sigma -$ derivation $d_h^{\sigma}(a) = i[h, \sigma(a)]$. It is known [7] that if for all $a \in \mathcal{A}, \sigma(ah) := \sigma(a)h$ and $\sigma(ha) := h\sigma(a)$, then d_h^{σ} induces the uniformly continuous one parameter group $\varphi_t(a) = e^{ith}\sigma(a)e^{-ith} - \sigma(a) + a$ of inner $* - \sigma$ - endomorphisms.

We end this section with the following well-known theorem entitled "Trotter-Kato Approximation Theorem" which can be found in [9]:

Theorem 2.9 Let d_n , $n \in \mathcal{N}$ be the generator of a C_0 - semigroup $\{\varphi_n(t)\}_{t \in R}$ satisfying $\|\varphi_n(t)\| \leq M e^{\omega t}$ on the Banach algebra A. If for some complex number λ_0 with $Re(\lambda_0) > \omega$ we have:

(i) $(\lambda_o - d_n)^{-1}$ converges strongly to some operator $R(\lambda_0)$ on A, and

(ii) the range of $R(\lambda_0)$ is dense in A

then there exists a unique operator d which is the generator of a C_0 - semigroup $\{\varphi_t\}_{t\in R}$ on A of the same type as $\{\varphi_n(t)\}_{t\in R}$ such that $(\lambda_o - d)^{-1} = R(\lambda_0)$ and $\varphi_n(t)$ converges strongly to $\varphi(t)$.

3. Approximately Inner σ - Dynamics on C^* - Algebras

Throughout this section σ is an idempotent bounded *- linear operator on the C^*- algebra \mathcal{A} .

Definition 3.1 A $* - \sigma -$ dynamics $\{\varphi_t\}_{t \in \mathbb{R}}$ on \mathcal{A} is called *approximately inner* $\sigma -$ dynamics if there exists a sequence $\{h_n\}$ of self adjoint elements of \mathcal{A} such that for each $a, b \in \mathcal{A}$

(i)
$$h_n(\sigma(ab) - \sigma(a)\sigma(b)) = (\sigma(ab) - \sigma(a)\sigma(b))h_n$$

(ii)
$$\sigma(h_n a) = h_n \sigma(a)$$
 and $\sigma(ah_n) = \sigma(a)h_n$
(iii) for each $t \in R$, $\varphi_t = s - \lim_{n \to \infty} \varphi_{n,t}$, where $\varphi_{n,t}(a) = e^{ih_n t} \sigma(a) e^{-ih_n t} - \sigma(a) + a$

which means for each $t \in R$

$$\lim_{n \to \infty} \varphi_{n,t}(a) = \varphi_t(a), \text{ for all } a \in \mathcal{A}$$

Theorem 3.2 Let $\sigma : \mathcal{A} \to \mathcal{A}$ be an endomorphism and d be the generator of a σ - dynamics $\{\varphi_t\}_{t\in R}$ satisfying $\|\varphi_t\| \leq 2 \|\sigma\| + 1$. If $\{h_n\}$ is a sequence of self adjoint elements of \mathcal{A} such that for each $a \in \mathcal{A}$

- (i) $\sigma(h_n a) = h_n \sigma(a)$ and $\sigma(ah_n) = \sigma(a)h_n$
- (ii) $(1-d)^{-1} = s \lim_{n \to \infty} (1 d_{h_n}^{\sigma})^{-1}$, where $d_{h_n}^{\sigma}(a) = i[h_n, \sigma(a)]$. Then $\{\varphi_t\}_{t \in \mathbb{R}}$ is approximately inner.

Proof. By Remark 2.8 $d_{h_n}^{\sigma}$ induces the uniformly continuous one parameter group $\varphi_n(t)(a) = e^{ih_n t} \sigma(a) e^{-ih_n t} - \sigma(a) + a$ and the condition (ii) implies that the range of $(1-d)^{-1}$ is dense in \mathcal{A} . Therefore by Trotter-Kato approximation Theorem for each $t \in R$, $\varphi_t = \lim_{n \to \infty} \varphi_{n,t}$. \Box

Corollary 3.3 Let $\{\varphi_t\}_{t\in R}$ be a C^* - dynamics on \mathcal{A} with the generator d. If $\{h_n\}$ is a sequence of self adjoint elements of \mathcal{A} such that $(1-d)^{-1} = s - \lim_{n \to \infty} (1-d_{h_n})^{-1}$, where $d_{h_n}(a) = i[h_n, a]$, then $\{\varphi_t\}_{t\in R}$ is approximately inner.

Remark 3.4 In the sense of Theorem 3.2 and Corollary 3.3

(*) A C^* - dynamics $\{\varphi_t\}_{t\in R}$ on the C^* - algebra \mathcal{A} with the generator d is approximately inner if there exists a sequence $\{h_n\}$ of self adjoint elements in \mathcal{A} such that $(1-d)^{-1} = s - \lim_{n \to \infty} (1 - d_{h_n})^{-1}$, where $d_{h_n}(a) = i[h_n, a]$, for all $a \in \mathcal{A}$.

(**) Let $\sigma : \mathcal{A} \to \mathcal{A}$ be an endomorphism. A σ - dynamics $\{\varphi_t\}_{t \in \mathbb{R}}$ on \mathcal{A} satisfying $\|\varphi_t\| \leq 2 \|\sigma\| + 1$ with the generator d is approximately inner if there exists a sequences $\{h_n\}$ of self adjoint elements in the C^* - algebra \mathcal{A} such that for each $a \in \mathcal{A}$

(i) $\sigma(h_n a) = h_n \sigma(a)$ and $\sigma(ah_n) = \sigma(a)h_n$

(ii) $(1-d)^{-1} = s - \lim_{n \to \infty} (1-d_{h_n}^{\sigma})^{-1}$, where $d_{h_n}^{\sigma}(a) = i[h_n, \sigma(a)]$

The following definition is a natural generalization of definition of approximately inner derivations:

Definition 3.5 A $* - \sigma -$ derivation $d : D \rightarrow A$ is said to be *approximately inner*

60

 σ - derivation on D if there exists a sequence $\{h_n\}$ of self adjoint elements of \mathcal{A} such that for each $a, b \in \mathcal{A}$

- (i) $h_n(\sigma(ab) \sigma(a)\sigma(b)) = (\sigma(ab) \sigma(a)\sigma(b))h_n$
- (ii) $\sigma(h_n a) = h_n \sigma(a)$ and $\sigma(ah_n) = \sigma(a)h_n$
- (iii) for each $a \in D$, $d(a) = \lim_{n \to \infty} d^{\sigma}_{h_n}(a)$, where $d^{\sigma}_{h_n}(a) = i[h_n, \sigma(a)]$.

Theorem 3.6 Let $\sigma : \mathcal{A} \to \mathcal{A}$ be an endomorphism and d be the generator of a σ dynamics $\{\varphi_t\}_{t\in R}$ satisfying $\|\varphi_t\| \leq 2 \|\sigma\| + 1$. If d is approximately inner and (1-d)(D(d)) is dense in \mathcal{A} , then $\{\varphi_t\}_{t\in R}$ is approximately inner.

Proof. Since d is an approximately inner σ - derivation, so there exists a sequence $\{h_n\}$ of self adjoint elements of \mathcal{A} such that for each $a \in \mathcal{A}$

(i) $\sigma(h_n a) = h_n \sigma(a)$ and $\sigma(ah_n) = \sigma(a)h_n$

(ii) for each $a \in D(d)$, $d(a) = \lim_{n \to \infty} d^{\sigma}_{h_n}(a)$.

Also $d_{h_n}^{\sigma}$ induces the uniformly continuous one parameter group $\varphi_n(t)(a) = e^{ih_n t} \sigma(a) e^{-ih_n t} - \sigma(a) + a$. By Remark 3.4 it is enough to show that $(1-d)^{-1} = s - \lim_{n \to \infty} (1-d_{h_n}^{\sigma})^{-1}$. For this aim we have

$$\begin{aligned} ||(1 - d_{h_n}^{\sigma})^{-1}(1 - d)(a) - (1 - d)^{-1}(1 - d)(a)|| \\ &= ||(1 - d_{h_n}^{\sigma})^{-1}(1 - d)(a) - (1 - d_{h_n}^{\sigma})^{-1}(1 - d_{h_n}^{\sigma})(a)|| \\ &\leq ||(1 - d_{h_n}^{\sigma})^{-1}|| \quad || \ (1 - d)(a) - (1 - d_{h_n}^{\sigma})(a)|| \\ &\leq (2||\sigma|| + 1)||(1 - d)(a) - (1 - d_{h_n}^{\sigma})(a)|| \to 0. \end{aligned}$$

Since $\|(1-d_{h_n}^{\sigma})^{-1}\| \leq 2 \|\sigma\| + 1$ (By Hille-Yosida Theorem [9]). Now the density of (1-d)(D(d)) in \mathcal{A} implies that $(1-d_{h_n}^{\sigma})^{-1} \to (1-d)^{-1}$ (strongly). \Box

Before we state the next theorem, we need the following well-known definition: **Definition 3.7** A subset D_0 of domain D of a closed linear operator d on the Banach space A is called a *core* for d, if d is the closure of its restriction on D_0 . In the other words D_0 is a core for d if for each $a \in D$, there exists a sequence $\{a_n\}$ in D_0 such that $a_n \to a$ and $d(a_n) \to d(a)$.

Theorem 3.8 Let $\sigma : \mathcal{A} \to \mathcal{A}$ be an endomorphism and $\{\varphi_t\}_{t \in R}$ be a σ - dynamics on \mathcal{A} satisfying $\|\varphi_t\| \leq 2 \|\sigma\| + 1$. If there exists a core D_0 for the generator d of $\{\varphi_t\}_{t \in R}$ such that d is approximately inner on D_0 , then $\{\varphi_t\}_{t \in R}$ is an approximately inner σ - dynamics.

Proof. First note that since d is approximately inner on D_0 , so there exists a sequence $\{h_n\}$ of self adjoint elements of \mathcal{A} such that $d_{h_n}^{\sigma}$ induces the uniformly

continuous one parameter group $\varphi_n(t)(a) = e^{ih_n t} \sigma(a) e^{-ih_n t} - \sigma(a) + a$. Also by the extended Hille-Yosida Theorem $\lambda = 1 \in \rho(d) \cap \rho(d_{h_n}^{\sigma})$ and the range R(1-d) of 1-d is \mathcal{A} . Further $\parallel (1-d)^{-1} \parallel \leq 2 \parallel \sigma \parallel + 1$ and $\parallel (1-d_{h_n}^{\sigma})^{-1} \parallel \leq 2 \parallel \sigma \parallel + 1$. Applying Remark 3.4 it suffices to show that

$$(1-d_{h_n}^{\sigma})^{-1} \to (1-d)^{-1}$$
 (strongly on \mathcal{A})

For this aim, let $\mathcal{B} = \{(1-d)(b): b \in D_0\} = R(1-d|_{D_0})$. First we show that \mathcal{B} is dense in \mathcal{A} . Let $a \in \mathcal{A}$, since $R(1-d) = \mathcal{A}$, so there exists $c \in D(d)$ such that a = c - d(c). But D_0 is a core for d. Thus there exists a sequence $\{b_n\}$ in D_0 such that $b_n \to c$ and $b_n - d(b_n) \to c - d(c) = a$. Hence \mathcal{B} is dense in \mathcal{A} . Now we show that $(1 - d_{h_n}^{\sigma})^{-1}$ converges strongly on \mathcal{B} to $(1 - d)^{-1}$. For, let $b \in \mathcal{B}$. There exists $b_0 \in D_0$ such that $b = b_0 - d(b_0)$ and by assumption $d_{h_n}^{\sigma}(b_0) \to d(b_0)$. Therefore

$$\| (1 - d_{h_n}^{\sigma})^{-1}(b) - (1 - d)^{-1}(b) \| = \| (1 - d_{h_n}^{\sigma})^{-1}(d_{h_n}^{\sigma} - d)(1 - d)^{-1}(b) \|$$

$$\leq (2 \| \sigma \| + 1) \| (d_{h_n}^{\sigma} - d)(1 - d)^{-1}(b) \|$$

$$= (2 \| \sigma \| + 1) \| (d_{h_n}^{\sigma} - d)(b_0) \| \to 0$$

which implies that for each $b \in \mathcal{B}$

$$(1 - d_{h_n}^{\sigma})^{-1}(b) \to (1 - d)^{-1}(b)$$

Finally given $a \in \mathcal{A}$ and $\epsilon > 0$. Since \mathcal{B} is dense in \mathcal{A} , so there exist $b \in \mathcal{B}$ and $N_{\epsilon} \in \mathcal{N}$ such that

$$\parallel b-a \parallel \leq \frac{\epsilon}{3(2 \parallel \sigma \parallel +1)}$$

and for each $n \ge N_{\epsilon}$

$$\| (1 - d_{h_n}^{\sigma})^{-1}(b) - (1 - d)^{-1}(b) \| \le \frac{\epsilon}{3}.$$

Therefore

$$\| (1 - d_{h_n}^{\sigma})^{-1}(a) - (1 - d)^{-1}(a) \| \leq \| (1 - d_{h_n}^{\sigma})^{-1}(a) - (1 - d_{h_n}^{\sigma})^{-1}(b) \|$$

$$+ \| (1 - d_{h_n}^{\sigma})^{-1}(b) - (1 - d)^{-1}(b) \|$$

$$+ \| (1 - d)^{-1}(b) - (1 - d)^{-1}(a) \|$$

$$< 2(2 \| \sigma \| + 1) \| b - a \| + \frac{\epsilon}{3} < \epsilon. \Box$$

4. Acknowledgment

The authors would like to thank the referee for his/her useful comments and suggestions.

References

- [1] F.F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, New York, 1973.
- [2] O. Bratteli and D.R. Robinson, Operator algebras and quantom statistical mechanics, Vol 1, Springer-Verlag, New York, 1987.
- [3] H.G. Dales, Banach algebras and automatic continuity, Oxford. Univ. Press, 2001.
- [4] M. Mirzavaziri and M.S. Moslehian, A Kadison-Sakai Type Theorem, arXiv: math. FA/0510267v2.
- [5] M. Mirzavaziri and M.S. Moslehian, Automatic continuity of σ- derivations in C*- algebras, Proc. Amer. Math. Soc., Vol.11, number 5 (2006), 805-813.
- [6] M. Mirzavaziri and M.S. Moslehian, Innermess of ρ- derivations on Hyperfinite Von Neumann algebras, Elec. J. Theor. Phys., Vol 6, Number 2 (2009), 321-326.
- [7] M. Mirzavaziri and M.S. Moslehian, σ- derivations in Banach algebras, Bull. Iranian Math. Soc., Vol 32, Number 1 (2006), 65-78.
- [8] G.J. Murphy, C^* algebras and operator theory, Academic Press, 1990.
- [9] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983.
- [10] S. Sakai, Operator algebras in dynamical systems, Cambridge Univ. Press, 1991.