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ABSTRACT. Runtime verification, monitoring and checking runtime behaviors,
plays an increasingly important role to realize tasks that have become inefficient
with static verification and implementation testing. In this paper, we propose
a new approach based on a framework to dynamic verification programs. The
framework exploits capabilities of active systems for verifying programs. Active
systems are ones those act based on occurrence of events and therefore it facil-
itates trapping events and monitoring program’s states. The active system is a

rule-based system and we use ECA rules to show active rules in the active sys-
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approach to a classical Abstract Data Type (ADT), stack, and express how

one can use an active environment to verify safety properties of a stack.
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Programs acts passively or actively. In passive programs such as compilers, an

algorithm takes some input value(s), computes output value(s) during finite steps
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and give feedback to the environment when they observe some event. Accordingly,
unlike passive programs, they never terminate. Fig. 1 shows passive and active
programs where s1, so and s, indicates steps of the program algorithm. Typical
active programs are process control, power plants; embedded systems in trains,
aircrafts and traffic-light controller. Active programs typically interact with its
environment to give feedback for some event.

To verify an active program behavior, we should verify the program reaction to
an environment event. Emergence of active applications such as control applications
shows the importance of dealing with them. Active programs act interactively and

reactively where interactive programs such as operating systems and web server

interact with their environment at their own speed. In contrast, Reactive ones
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programs are usually non-deterministic, reactive ones are generally deterministic. In

other words, although all executions of a reactive program may be infinite sequence

of states, an execution includes finite states. This means that the output values of

The idea of activeness is taken from active databases [2] where activeness is

as change to data indicates the time of firing an event, Condition indicates evalua-

tion of some predicate(s) on firing the event and the Action is executed when the

firing, an action is executed in a separate sub-transaction that waits until the main

transaction is committed.

applications, or asynchronous such as changes of sensor values or time. Pub-

lish/Subscribe technology is a typical event-driven method where a publisher sends

1

LY

of Internet-based information systems. Accordingly, publish/subscribe is embedded
within many Web applications for supporting deliverance of information in response
. . "
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The paper is organized as follows. In Section 2, we explain ECA rules and their
roles in an active system. In Section 3, we deal with discussing runtime verification.
In Section 4 we propose our model and show how aspect-oriented method can be
used for equipping the target program should be verified and in Section 5, we explain
implementation of the proposed model. To show effectiveness of our method, in
Section 6 we state a case study and apply our model to it. Finally, in Section 9 we

states conclusions and related work.



80 SEYED MORTEZA BABAMIR

2. ECA RULES

The first mechanism used to provide automatic reaction was production rules.
The rules are stated in form of Condition-Action. When monitoring events in a

passive system, a polling technique can be used to determine changes to data.

IA

polling should be fine-tuned so as not to flood the system with too frequent queries

that mostly return the same answers, or in the case of too infrequent polling, the

layer that performs the situation monitoring before sending the operations to the

system. The problem with this approach is that it greatly limits the way rule

queries representing the conditions will have to be sent to the system.

Event-Condition-Action rules have been used to provide reactive functionality

s P

and implementing business processes [7].

In rule-based systems, the active rules can be used for purposes of monitoring,

control. and reasonine. In active datahase svstems. the rules are nrimarilv nsed
;;;;;;;; , and reasoning. in active cdatabase systems, the rules are primarily used
for monitoring changes to the data stored in the database. In reactive systems the

rules are used for reacting to changes of some external environment and performing
actions on (controlling) the environment in response to the changes. In knowledge-
based systems, the rules are usually used for reasoning using stored facts and by
deducing new facts by using the rules. Active rules can serve as a complement to
traditional coding techniques where all the functionality of the system is specified in
algorithms written in modules and functions. Active rules provide a more dynamic
way of handling new situations and are often better alternatives to modifying old
functions to cope with new situations. A common technique that is used is to
use rules for specifying parts of the system during the design phases and to use
these rules as guideline for the actual coding phases or to compile the rules into

corresponding functions to simplify the coding. This last technique is sometimes
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violated an error is generated. The rules can signal to the user or some application

languages fault handlers can be defined that catches error signals. Rules in an active

system can be seen as having similar behavior, but catches events.

To check the correctness of software, verification and validation method are used.

tion and use verification techniques such as model checking to check the specifica-

tion. However, they are not become scalable and well-suited for some applications

lem when one aim to use model checking. These issues and other ones justify using

runtime verification (Fig. 2) The figure shows the issues that can not be resolved
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conforms to some design. Furthermore, the whole system may be very large while
we are interested only in its specific aspects. We want to check that if a software
implementation satisfy some properties. Testing relies on the construction of test
strategies for a property including subsequent execution of parts or all of the system
according to these strategies. As the testing takes place on a lower level of abstrac-
tion, the range of properties that can be validated is much greater than using formal
verification.

Runtime verification and monitoring method is a lightweight formal verification
method with the goal of checking software against their formal requirements at
runtime. This method has advantages: (1) bridges the gap between formal verifica-

tion and software testing methods, resulting in validity requirements properties and
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FiGURE 2. Runtime verification tasks.

steering of programs at runtime, (2) decides about current execution of programs
not about all their possible executions. According to Fig. 2, runtime verification
aims to determine properties those(1) could not decided by verification, (2) could
not detected by testing and (3) include conditions that closely related to physical
environment in which the program would run.

Among others, constraint verification and authorization control are functions
that can use data monitoring. By constraint verification, rules can monitor, detect
and abort any query that violate some constraint. By authorization control, rules
can be used to check that if the user or application has permission to perform specific

actions in the system. Telecommunications Network Management and Financial
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monitoring activities.

A monitor can be connected to the target program in one to two stages. In

has good performance; however, it is invasive, i.e. by this method, the monitor

code is weaved into the target program and thus it affects the target code. In

separate process from the target program, reducing the problem of intrusion at the

expense of complicating monitor access and reducing performance. There is another

DI

obtaining data about program’s behavior, can be considered as invasive or non-

invasive [9]. In the invasive approach, logic of obtaining events and reaction to are

g ng ig

stage approach has been shown in Fig. 3b, in which the reaction code is separated
from the target program and managed by a separate entity. The thread model has
ving m 1ism wasive 1 can n 1 several ways.
The most common ones, despite its limitations, is manually insert the monitor code
into the target program. In this method, the program user reads the source code of
the target program and manually weaves probe codes into the target program, which
is time consuming and may be incomplete. For exhaustive monitoring, weaving
should be complete in the sense that it should capture all the concerned codes
of the target program; otherwise, incomplete weaving leads to missing some data

capturing.This could lead to false or missed detection of faults.
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FicURE 3. Weaving
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get program code immediately prior to or during execution. The probe code is

inserted at the executable code (e.g., byte code in Java) level. Compared to the

modifying a system at executable-code level requires keeping the format of the ex-

ecutable code consistent.

provide data about the behavior of any program executed by the interpreter. Simi-

larly, weaving at compiler level includes preprocessors and code generators that add

lems: (1)Either we should have source code of interpreter or compiler for weaving

or that it should have already been weaved and (2) Interpreter or compiler weaving

un
)

source code of interpreter or compiler. On the other hand, a weaved interpreter or

compiler may be not adequately matched our probe needs.

4. THE PROPOSED MODEL

An active system transforms a passive process into an active environment by

1igine alerte and triceers. Inm this section. we
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of the target program. The model has two parts, monitoring and verifier. As the
figure shows, the monitoring part has two tasks, capturing events that occur in the
program environment and taking a decision made by the verifier part. The verifier
part is responsible for taking policies and valid decisions.

A course of events, environments conditions, and actions, embedding in ECA
rules, can form triggering graph, as discussed in Section 2. The triggering graph
represents each rule as a vertex, and there is a directed arc from a vertex r; to a
vertex r; if 7; may trigger ;. An action of rule r; may generate an event which
triggers rule r;. Activation of a rule may change an environment condition. An
activation graph representing rules as vertices, has an arc between vertices r; and 7

indicates that r;’s condition may be changed from False to True after the execution



86 SEYED MORTEZA BABAMIR

=
Mamans

may be True after the execution of r;’s action.

4.1. Program Activation. Our approach is different from past-related work. Our

mon

itored

from passive program into active one. Passive program is activated if it was well

aware from occurrence of events. Awareness can be done by invasive or non-invasive
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fore, we weave source-code program by aspects automatically, not manually. This
type of weaving has no disadvantage over the manual source-code level weaving
and has no difficulty over the executable-code level one. Source-code weaving can
be achieved automatically using aspect-oriented approach. By aspect, we define
each property that to be verified; therefore, by aspect definition, related probe
codes (i.e., crosscutting points of property) are inserted into units of the program.
Aspect-oriented holds promise for the creation of aspects, which are modules that
centralize distributed functionality. Fig. 5 shows using aspects for weaving the
capture code into source code of the target program. Afterwards, the modified pro-
gram will emit a signal when a related event occurs and the monitor will capture

the event and will send it to the checking part.
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Second, we build verifier as a rule based system. The verifier obtains events emit-

Ograin and monitors vici.

ecution noints of proeram. such as method ecall and return events., Therefore
eCution points Of Program, such as metinoda call ana return events. e

s

in an active system, we continuously respond those events that determine the sys-

tem’s behavior, as well as its flow of control. One common way for expressing control
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has active behavior as well as activated program. ‘T'his behavior is defined by ECA
rules and is capable of reaction to events. Active behaviors are functionality that
is executed whenever certain requirements on environment are met. These rules
specify for each action (process) it’s triggering event and its guarding condition.
The action is executed when the triggering event occurs, if and only if the guarding
condition is fulfilled at that time. As discussed in Sections 1, 2, in an ECA rule,
Event is a primitive (basic) or composite event, Condition is a Boolean expression
and Action is an action that should be executed. Complex events can be formed
from simple events. For example composed event (E1—E2) means that one of the
two events E1 or E2 must occur, and composed event (E1:E2) means that the two

events must occur in the given order.
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plication program that to be monitored and (2) The control program (verifier) that

monitors the application program. The application program is activated automati-

of verifier functional ones that define how and under which conditions to monitor

5. IMPLEMENTATION

{event, type} and {time} where the {event, type} represents any primitive event and

the {time} is the time when the event occurred. In addition, an active system has

consumed in time order. In the cumnlative noliev. all ingtane
consumed in time order. In the cumulative policy, all instances

The expressiveness of the event part can be divided into comparing the types

of events that the ruleg ¢
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combined into complex events. Different types of events include events such as
sensor value changes, specified state changes in the applications, or time. Modeling
events can include an event specification language that can combine events using
logical composition, event ordering, sequential and temporal ordering, and event
periodicity. The expressiveness of the condition part can be divided into whether the
events can be referenced as changed data and whether old values can be referenced or
not. The expressiveness of the action part can include rule activation/deactivation.
Execution semantics of rules includes rule processing coupling modes. Cascading
rule execution, i.e., (1) if one rule can trigger another and (2) if simultancously
triggered rules are subjected to some conflict resolution method are also part of the

classification of rule semantics.
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on an event bus to the rule processor. Event manager also supports storing events

in event histories represented as time series that can be accessed through event

monitoring, and execution. The processing of rules is divided into four phases: (1),

Event Detection (2), Change monitoring (3), Conflict resolution and (4) Action ex-

Change monitoring includes using the event data from the event functions to deter-

mine whether any condition of any activated rules have changed, i.e. have become

rule-initiated events such as time events. All events are dispatched through table-

driven execution. Events are accumulated chronologically in stored temporal event

LTULICUIOLIS 1CPICHULILTCU DY LT bULIUS.

6. CASE STUDY

In this case study, we apply our approach to abstract data type, ADT, that have
emerged as an effective mechanism for organizing large modern software systems.
An ADT allows us build programs that use high-level abstractions. With ADT, we
can separate the conceptual transformations that our programs perform on our data
from any particular data structure representation and algorithm implementation.
Therefore, an abstract data type is a data type (a set of values and a collection
of operations on those values) that is accessed only through an interface. The
ADT interface defines a contract between users and implementers that provides a
precise means of communicating what each can expect of the other. This contract

is specified by means of safety and liveness properties.
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the data type as an implementation. We consider a special case of ADT, so-called

main request (i.e. concern) of client is access to stack through the interface; there-

fore, we consider two classes, one for stack object and other for the request object

class request {

state s;
bool create(stack st);
bool destroy(stack st);

string pop(void);
string peek(void);

1
i

6.1. Requirement Properties. The concern for access to stack, contract between
user and implementer, has two safety and two liveness properties. The safety proper-
ties (something bad never happens) are: (1) Stack overflow never happens; therefore,
request must not able to push the item onto the full stack and (2) Stack underflow
never happens; therefore, request must not able pop up from empty stack.

The liveness properties (something good will eventually happen) are: (1) The
request to push the item onto not made full stack must be done and (2) The request

to pop up the item from not made empty stack must be done.
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(modifying aspect crosscutted in push and pop units), (2) visiting the stack (visit-

ing aspect in peek unit) and (3) existence the stack (existence aspect in create and

interest to be monitored are push and pop units. Therefore, the aspect, join points,

and pointcut are defined by AspectJ language as follows:

i

Pointcut UpdateStack ( ):
call (public void stack.push(string s); // join point 1

bel

if stack.state = = empty //underflow! state of request object is set to rejected

request.change(reject);

then generate ECA rules. Control program (verifier) for push unit of modify aspect
formed by the generated ECA rules 1 and 2. When a request (an event) occurs
that is related to modify aspect such as push event, (1) the safe guard ECA rule of
verifier rejects the request if it causes overflow, (2) ECA rule 2 of verifier changes
state of request and stack objects. Similarly, one visualizes safety property 2 of
modify aspect for pop unit and generates the related ECA rule. In addition, we can

visualize liveness properties.

ECA rule 1 for safety property 1 of modify aspect:
when push //safety rule 1
if (stack.full)
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ECA rule 2 for safety property 1 of modify aspect:
when push(item) //safety rule 2

request.state is initiated

do request.change(rejected)

‘\./

active system. First, we make activate verified program by well making aware it of

events. For this purpose, we automatically weave the monitor code into the target

rules, we show how one can develop an activated verifier program. This contributes

to automatic runtime verification of verified program. Creation of monitoring rules
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typical behaviors has showed in one case study. Some future work can apply the
approach to distributed systems as well as real-time ones.

Meyer proposed Design by Contract approach for the object-oriented language
Eiffel [8] that is a lightweight formal technique and allows for dynamic runtime
checks of specification violation. The specification of the contract is directly written
into the program in the form of assertions. Ideally, the syntax of assertions is close to
the programming language itself and thus easy to use for all programmers and those
are checked during program execution. Design by Contract extensions have been
proposed for a number of languages besides Eiffle, such as Ada and C++. While
trace assertions in the Design by Contract are the counterpart of behavioral-oriented

specification like process algebras or temporal logic, they are used to monitor the
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[10]. There are automated trace analyzers, is connected to an event-oriented tracer.

The traced program is executed alongside a trace analysis session in which the user

In [11]), Auguston and Trakhtenbrot automatically created monitoring State-

charts by the formulas that specify the system’s behavioral properties in a proposed

leads to a more realistic analysis of reactive systems, as monitoring is supported

in the system’s actual operating environment. For models that include design level

The Monitoring, Checking and Steering (MaC) framework [12] is another tech-

nique which has been designed to ensure that the execution of a real-time system is

include both computational and timing requirements. These properties are defined

in terms of events, conditions, auxiliary variables, and auxiliary functions. Finally,

animation”), a library for use with the functional programming language Haskell.

It main idea is the explicit focus on declarative event-oriented programming. It
attempts to convey this new paradigm for programming interaction applications,
illustrate its use by means of a running example, and contrast it with the dominant
but ill-structured approach, which is based on imperative callback procedures.
Using two special Interval Temporal Logic, FIL and GIL, [14] specified properties
of a reactive system and created Harel’s Statecharts from the specifications. These

hierarchical and concurrent automata constitute runtime monitor and verifier for
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tion of Object-Oriented programs and automatically produced ECA rules from the

specification. The rules used to analyze the program runtime behavior.

[1] Luca Aceto, Anna Inglfsdttir, Kim Guldstrand Larsen, Jiri Srba, Reactive Systems Modelling,

University Press

[2
3

Jennifer Widom, Active Database Systems, Triggers and Rules, Morgan Kaufmann, 1996.

Norman W. Paton Paton and Oscar Daz, Active Database Systems, ACM Computing Surveys,
Vol. 31, Number 1 (1999), 63-103.

Paul Pedley, Intranets and Push Technology: Creating an Information-Sharing Environment,
Aslib Publisher, 1999.

[5] Junman Sun, Huajing Fang, Ganyi Wang, Zhendong He, Information Push Technology and its

4

Software Engineering (2008), 198-201.
[6] Alex King Yeung Cheung, Hans-Arno Jacobsen, Load Balancing Content-based Pub-
lish/Subscribe Systems, ACM Transactions on Computer Systems, Vol. 28, Numbaer 4 (2010).

v H. Cheng and Ji Z
ty H and

waeng o Anang,

Adaptive Software, Software Engineering Models in Software Engineering: In Proc. of Work-
shops and Symposia at MoDELS, Lecture Notes in Computer Science, Vol. 5002, 212-224, DOI:
10.1007/978-3-540-69073-3-23, 2008.

PR | vt T adaantn Taciag A itz adioa. ~1 9 . P, HONNn)  1_0s
aida 1Iendas ifn raeCiionic Esigi Auloinavioin: VoL, o, INUINDET 1 (&UUy), 1-90.

[11] Mikhail Auguston, Run-time Monitoring of Reactive System Models, The 2nd Int. Workshop
on Dynamic Analysis, 2004.

[12] Usa Sammapun, Insup Lee and Oleg Sokolsky, RT-MaC: Runtime Monitoring and Checking of
Quantitative and Probabilistic Properties. In Proc. of the 11th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications (2005), 17-19.

[13] Daniel Zingaro. Invariants: A Generative Approach to Programming, College Publications,
2008.

[14] Seyed Morteza Babamir and Saeed Jalili, Runtime Monitoring and Verifying Reactive Sys-
tems Using Interval Temporal Logic, In Proc. of the 13th Iranian Conference on Electrical

Engineering, University of Zanjan, 2005.



RUNTIME VERIFICATION OF ... — JMMRC VOL. 1, NUMBER 1 (2012) 95

Using State Machines and ECA Rules. In Proc. of the 14th International Conference on Intelli-




