- Boichard, D., Chung, H., Dassonneville, R., David, X., Eggen, A., Fritz, S., 2012. Design of a bovine low-density SNP array optimized for imputation. PLoS ONE 7.e34130 doi: 10.1371/journal.pone.0034130.
- Bouwman, A.C., Hickey, J.M., Calus, M.P., Veerkamp, R.F., 2014. Imputation of non-genotyped individuals based on genotyped relatives: assessing the imputation accuracy of a real case scenario in dairy cattle. Genetics Selection Evolution 46,6-10 doi: 10.1186/1297-9686-46-6.
- Brøndum, R.F., Ma, P., Lund, M.S., Su, G., 2012. Short communication: genotypeimputation within and across Nordic cattle breeds. Journal of Dairy Science 95, 6795–6800.
- Browning, B.L., Browning, S.R., 2009. A unified approach to genotype imputation and haplotype phase inference for large data sets of trios and unrelated individuals. The American Journal of Human Genetics 84,210-223 doi: 10.1016/j.ajhg.2009.01.005.
- Calus, M.P.L., Bouwman, A.C., Hickey, J.M., Veerkamp, R.F., Mulder, H.A., 2014. Evaluation of measures of correctness of genotype imputation in the context of genomic prediction: a review of livestock applications, Animal 8, 1743-1753 doi:10.1017/S1751731114001803
- Chen, L., Li, C., Sargolzaei, M., Schenkel, F., 2014. Impact of genotype imputation on the performance of GBLUP and Bayesian methods for genomic prediction. Plos ONE 9, e101544.
- Chen, M.H., Huang, J., Chen, W.M., Larson, M.G., Fox, C.S., Vasan, R.S., Seshadri, S., O’Donnell, C.J., Yang, Q., 2012. Using family-based imputation in genome-wide association studies with large complex pedigrees: the Framingham heart study. PLoS ONE 7:e51589.
- De los Campos, G., Naya, H., Gianola, D., Crossa, J., Legarra, A., Manfredi, E., Weigel, K., Cotes, J.M., 2009 Predicting Quantitative Traits With Regression models for Dense Molecular Markers and pedigree. Genetics 182, 375-385.
- De los Campos, G., Pérez, P., 2010. BLR: Bayesian Linear Regression. R package version 1.1.
- Erbe, M., Hayes, B.J., Matukumalli, L.K., Goswami, S., Bowman, P.J., Reich, C.M., Mason, B.A., Goddard, M.E., 2012. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. Journal of Dairy Science 95, 4114–4129 doi: 10.3168/jds.2011-5019.
-
Hickey, J.M., Crossa, J., Babu, R., de losCampos, G., 2012. Factors affecting the accuracy of genotype imputation in populations from several maize breeding programs. Crop Science 52, 654–663 doi: 10.2135/cropsci2011.07.0358.
- Johnston, J., Kistemaker, G., Sullivan, P.G., 2011. Comparison of different imputation methods. Interbull Bulletin 44, 25–33.
- Lu, A.T., Cantor, R.M., 2014. Identifying rare-variant associations in parent-child trios using a Gaussian support vector machine. BMC Proceedings 8, S98 doi: 10.1186/1753-6561-8-S1-S98.
- Meuwissen, T.H.E., Goddard, M.E., 2010. The use of family relationships and linkage disequilibrium to impute phase and missing genotypes in up to whole genome sequence density genotypic data. Genetics 185, 1441–1449 doi: 10.1534/genetics.110.113936.
- Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E., 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829.
- Molaei Moghbeli, S., Barazandeh, S., Vatankhah, M., Mohammadabadi, M., 2013. Genetics and non-genetics parameters of body weight for post-weaning traits in Raini Cashmere goats. Tropical Animal Health and Production 45, 1519-1524 doi: 10.1007/s11250-013-0393-4
- Mulder, H.A., Calus, M.P.L., Druet, T., Schrooten, C., 2012. Imputation of genotypes with low-density chips and its effect on reliability of direct genomic values in Dutch Holstein cattle. Journal of Dairy Science 95,876-889 doi: 10.3168/jds.2011-4490.
- Ober, U., Ayroles, J.F., Stone, E.A., Richards, S., Zhu, D., Gibbs, R.A., Stricker, C., Gianola, D., Schlather, M., Mackay, T.F.C., Simianer, H., 2012. Using whole-genome sequence data to predict quantitative trait phenotypes in Drosophila melanogaster. PloS Genetics 8:e1002685 doi: 10.137/journal.pgen.1002685.
- Pimentel, E.C.G., Erbe, M., König, S., Simianer, H., 2011. Genome partitioning of genetic variation for milk production and composition traits in Holstein cattle. Frontires in Genetics 2, 19-25.
- Pimentel, E.C.G., Wensch-Dorendorf, M., Konig, S., Swalve, H.H., 2013. Enlarging a training set for genomic selection by imputation of un-genotyped animals in populations of varying genetic architecture. Genetics Selection Evolution. 45, 45-12 doi: 10.1186/1297-9686-45-12.
- R Development Core Team. R: a language and environment for statistical computing, Vienna. 2014. Available at: http://www.r-project.org/.
- Sargolzaei, M., Jansen, G.B., Schenkel, F.S., 2014. A new approach for efficient genotype imputation using information from relatives. BMC Genomics 15,478 doi: 10.1186/1471-2164-15-478.
- Sargolzaei, M., Schenkel, F.S., Jansen, G.B., Schaeffer, L.R., 2008. Extent of linkage disequilibrium in Holstein cattle in North America. Journal of Dairy Science 91, 2106–2117 doi: 10.3168/jds.2007-0553.
- Scheet, P., Stephens, M., 2006. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. The American Journal of Human Genetics 78, 629–44.
- Silva, F.F., Rose, G., Guimaräes, S., Lopes, P.S., Campos, G., 2011. Tree-step Bayesian factor analysis applied to QTL detection in crosses between outbred pig populations. Livestock Science 142, 210-215.
- Technow, A.F., 2015. Hypred, simulation of genomic data in applied genetics. R package version 0.5. Available at: http://cran.rproject.org//web/packages/hypred
- Villumsen, T.M., Janss, L., Lund, M.S., 2009. The importance of haplotype length and heritability using genomic selection in dairy cattle. Journal of Animal Breeding and Genetics 126, 3-13.
- Weigel, K.A., Van Tassell, C.P., O’Connell, J.R., VanRaden, P.M., Wiggans, G.R., 2010. Prediction of unobserved single nucleotide poly-morphism genotypes of Jersey cattle using reference panels and population based imputation algorithms. Journal of Dairy Science 93, 2229-2238 doi: 10.3168/jds.2009-2849.
- Wellmann, R., Preuß, S., Tholen, E., Heinkel, J., Wimmers, K., Bennewitz, J., 2013. Genomic selection using low density marker panels with application to a sire line in pigs. Genetics Selection Evolution 45, 28 doi: 10.1186/1297-9686-45-28.
- Willer, C.J., Sanna, S., Jackson, A.U., Scuteri, A., Bonnycastle, L.L., 2008. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nature Genetics 40, 161–9.
- Williams, A.L., Patterson, N., Glessner, J., Hakonarson, H., Reich, D., 2012. Phasing of many thousands of genotyped samples. The American Journal of Human Genetics 91, 238–251 doi: 10.1016/j.ajhg.2012.06.013.
|