
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,380,003 |
تعداد دریافت فایل اصل مقاله | 3,580,072 |
$\gamma$- BCK algebras | ||
Journal of Mahani Mathematical Research | ||
دوره 11، شماره 3 - شماره پیاپی 23، بهمن 2022، صفحه 133-145 اصل مقاله (459.55 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2022.19322.1234 | ||
نویسندگان | ||
Arsham Borumand Saeid* 1؛ M Murali Krishna Rao2؛ R Kumar Kona3 | ||
1Department of pure Mathematics, Facultu of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran. | ||
2Department of Mathematics, Sankethika Institute of Tech. and Management, Visakhapatnam, 530 041, India | ||
3Department of Mathematics, GIS, GITAM (Deemed to be University), Visakhapatnam- 530 045, A.P., India | ||
چکیده | ||
We know that $\Gamma-$ring, $\Gamma-$incline, $\Gamma-$semiring, $\Gamma-$semigroup are generalizations of ring, incline, semiring and semigroup respectively. In this paper, we introduce the concept of $\Gamma-$BCK-algebras as a generalization of BCK-algebras and study $\Gamma-$BCK-algebras. We also introduce subalgebra, ideal, closed ideal, normal subalgebra, normal ideal and construct quotient of $\Gamma-$BCK-algebras. We prove that if $f: M\to L$ be a normal homomorphism of $\Gamma-$BCK-algebras $M$ and $N,$ then $\Gamma-$BCK-algebra $M/N$ is isomorphic to $Im (f)$ where $N =Ker (f).$ | ||
کلیدواژهها | ||
($Gamma-$)BCK-algebra؛ Quotient $Gamma-$BCK-algebra؛ Subalgebra؛ Ideal؛ (Closed؛ Normal) Ideal | ||
مراجع | ||
[1] Akram, M., Spherical fuzzy k-algebras, Journal of Algebraic Hyperstructures and Logical Algebras, 2(3) 85{98 (2021).
[2] Akram, M. Davvaz, B. and Feng, F., Intutionistic fuzzy soft K-algebras, Mathematics in Computer science, 7(3) 353{365 (2013).
[3] Dar, K. H., and Akram, M., On K-homomorphisms of K-algebras, International Mathematical Forum, 2(46) 2283{2293 (2007).
[4] Huang, Y. S., BCI-Algebra, Science Press, Beijing, China, (2006).
[5] Iseki, K., On BCI-algebras, Kobe University. Mathematics Seminar Notes, 8(1) (1980) 125{130.
[6] Iseki, K. and Tanaka, S., An introduction to the theory of BCK-algebras, Mathematica Japonica, 23(1) (1978) 1{26.
[7] Imai, Y. and Iseki, K., On axiom systems of propositional calculi, XIV, Proceedings of the Japan Academy, 42 (1966) 19{22.
[8] Iseki, K., An algebra related with a propositional calculus, Proceedings of the Japan Academy, 42 (1966) 26{29.
[9] Jie, J. M. and Jun, Y. B., BCK-Algebras, Kyung Moon Sa Co., Seoul, Republic of Korea, 1994.
[10] Meng, J., On ideals in BCK-algebras, Math., Japonica 40 (1994) 143{154.
[11] Murali Krishna Rao, M., semirings-I, Southeast Asian Bull. of Math., 19(1) (1995) 49{54.
[12] Murali Krishna Rao, M. and Venkateswarlu, B. Regular incline and eld semiring, Novi Sad J. of Math., 45 (2) (2015), 155-171.
[13] Murali Krishna Rao, M., -Group, Bulletin Int. Math. Virtual Inst., 10(1) (2020) 51{58.
[14] Radfar, A., Rezai, A., Saeid, A. B., Extensions of BCK-algebras, Cogent Math., 3 (2016).
[15] Sen, M. K., On semigroup, Proc. of Inter. Con. of Alg. and its Appl., Decker Publicaiton, New York (1981) 301{308. | ||
آمار تعداد مشاهده مقاله: 223 تعداد دریافت فایل اصل مقاله: 370 |