
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,380,003 |
تعداد دریافت فایل اصل مقاله | 3,580,074 |
Some results on uncorrelated dependent random variables | ||
Journal of Mahani Mathematical Research | ||
دوره 11، شماره 3 - شماره پیاپی 23، بهمن 2022، صفحه 175-189 اصل مقاله (517.06 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2022.19416.1245 | ||
نویسندگان | ||
Ali Dolati* 1، 2؛ Mohammad Amini1؛ G. R. Mohtashami Borzadaran1 | ||
1Department of Statistics, , Ferdowsi University of Mashhad, Mashhad, Iran | ||
2Department of Statistics, Yazd University, Yazd, Iran | ||
چکیده | ||
In probability and statistics the earliest concept related to independence is the uncorrelatedness. It is well known that a pair of independent random variables are uncorrelated, but uncorrelated random variables may or may not be independent.The aim of this paper is to provide some new models for the joint distribution of the uncorrelated random variables that are not independent. The proposed models include a bivariate mixture structure, a transformation method, and copula method. Several examples illustrating the results are included. | ||
کلیدواژهها | ||
Copula؛ Dependent؛ Independent؛ Sub-independence؛ Uncorrelated | ||
مراجع | ||
[1] C. Amblard and S. Girard, Symmetry and dependence properties within a semiparametric family of bivariate copulas, Journal of Nonparametric Statistics, 14, (2002), 715-727.
[2] M. Amini, H.R Nili Sani and A. Bozorgnia, Aspects of negative dependence structures, Communications in Statistics-Theory and Methods, 42, (2013), 907-917.
[3] H. Bazargan, H. Bahai, and A. Aminzadeh-Gohari, Calculating the return value using a mathematical model of signi cant wave height, Journal of Marine Science and Technology, 12, (2007), 34-42.
[4] B. Beckers, H. Herwartz, and M. Seidel, Risk forecasting in TGARCH models with uncorrelated dependent innovations, Quantitative Finance, 17(1), (2017), 121-137.
[5] J. Behboodian, Uncorrelated dependent random variables, Mathematics Magazine, 51(5), (1978), 303-304.
[6] J. Behboodian, Examples of uncorrelated dependent random variables using a bivariate mixture, The American Statistician, 44(3), (1990), 218.
[7] J. Behboodian, A. Dolati and M. Ubeda-Flores, Measures of association based on average quadrant dependence, Journal of Probability and Statistics, 3, (2005), 161-173.
[8] J. D. Brott, Zero correlation, independence and normality, The American Statistician, 40(4), (1986), 276-277.
[9] H. A. David, A historical note on zero correlation and independence, The American Statistician, 63(2), (2009), 185-186.
[10] L. Y. Deng and R.S. Chhikara, On the characterization of the exponential distribution by the independence of its integer and fractional parts, Statistica Neerlandica, 44(2), (1990), 83-85.
[11] T. M. Durairajan, A classroom note on sub-independence, Gujrat Statistical Research, 6, (1979), 17-18.
[12] N. Ebrahimi, G. G. Hamedani E. S Soo and H. Volkmer, A class of models for uncor-related random variables, Journal of Multivariate Analysis, 101(8), (2010), 1859-1871.
[13] C. Francq, R. Roy, and J. M. Zakoan, Diagnostic checking in ARMA models with uncorrelated errors, Journal of the American Statistical Association, 100(470), (2005), 532-544.
[14] C. Francq and H. Rassi, Multivariate portmanteau test for autoregressive models with uncorrelated but nonindependent errors, Journal of Time Series Analysis, 28(3), (2007), 454-470.
[15] C. Genest, B. Remillard and D. Beaudoin, Goodness-of- t tests for copulas: A review and a power study, Insurance: Mathematics and economics, 44(2), (2009), 199-213.
[16] J. D. Gibbons, Mutually exclusive events, independence and zero correlation, The American Statistician, 22, (1968), 31-32.
[17] A. K. Gupta, D. Song, and G. Szekely, The dependence of uncorrelated statistics, Applied Mathematics Letters, 7(5), (1994), 29-32.
[18] G. G. Hamedani, H. Volkmer, and J. Behboodian, A note on sub-independent random variables and a class of bivariate mixtures, Studia Scientiarum Mathematicarum Hungarica, 49(1), (2012), 19-25.
[19] G. G. Hamedani, Sub-independence: An expository perspective, Communications in Statistics-Theory and Methods, 42(20), (2013), 3615-3638.
[20] G. G. Hamedani M. Maadooliat, Sub-Independence: A Useful Concept. Nova Science Publishers, 2015.
[21] K. Joag-Dev, Independence via uncorrelatedness under certain dependence structures, The Annals of Probability, 11, (1983), 1037-1041.
[22] H. Joe, Dependence Modeling with Copulas. CRC press, 2014.
[23] C. J. Kowalski, Non-normal bivariate distributions with normal marginals, The American Statistician, 27(3), (1973), 103-106.
[24] A. Krajka and D. Szynal, On measuring the dependence of uncorrelated random variables, Journal of Mathematical Sciences, 76(2), (1995), 2269-2274.
[25] H. O. Lancaster, Zero correlation and independence, Australian Journal of Statistics, 21, (1959), 53-56.
[26] T. H. Lee and X. Long, Copula-based multivariate GARCH model with uncorrelated dependent errors, Journal of Econometrics, 150(2), (2009), 207-218.
[27] I. N. Lobato, Testing that a dependent process is uncorrelated, Journal of the American Statistical Association, 96(455), (2001), 1066-1076.
[28] E. Lukacs, A characterization of the gamma distribution, Ann. Math. Statist., 26, (1955), 319{324.
[29] Y. B. Manassara, Multivariate portmanteau test for structural VARMA models with uncorrelated but non-independent error terms, Journal of Statistical Planning and Inference, 141(8), (2011), 2961-2975.
[30] Y. B. Manassara and H. Rassi, Semi-strong linearity testing in linear models with dependent but uncorrelated errors, Statistics and Probability Letters, 103, (2015), 110-115.
[31] G. Marsaglia, Random variables with independent integer and fractional parts, Statistica Neerlandica, 49(2), (1995), 133-137.
[32] P. Mikusinski, H. Sherwood, and M. D. Taylor, Shues of min, Stochastica, 13, (1992), 61{74.
[33] T. F. Mori and G. J. Szekely, Representations by uncorrelated random variables, Mathematical Methods of Statistics, 26(2), (2017), 149-153.
[34] R. B. Nelsen, An Introduction to Copulas. Springer Science & Business Media, 2007.
[35] E. Pollak, A comment on zero correlation and independence, The American Statistician, (1971), 25, 53.
[36] M. Scarsini, On measures of concordance, Stochastica, 8, (1984), 201{218.
[37] S. M. Schennach, Convolution without independence, Journal of Econometrics, 211(1), (2019), 308-318.
[38] B. Schweizer E. F. Wol , On nonparametric measures of dependence for random variables, Annals of Statistics, 9, (1981), 879-885.
[39] W. Shih, More on zero correlation and independence, The American Statistician, (1971), 25, 62.
[40] T. Shimura, Limit distribution of a roundo error, Statistics and Probability Letters, 82(4), (2012), 713-719.
[41] A. Sklar, Fonctions de repartition a n dimensions et leurs marges, Publications de l'Institut de statistique de l'Universite de Paris, 8, (1959), 229-231.
[42] F. W. Steutel and J. G. F Thiemann, On the independence of integer and fractional parts, Statistica Neerlandica, 43(1), (1989), 53-59.
[43] V. Yeremieiev, Forecasting of the number of bird collisions with turbines in the territory of Pre-Azov region wind park using the route census method, Proceedings of E3S Web of Conferences Vol. 280, (EDP Sciences, 2021), p. 06010. | ||
آمار تعداد مشاهده مقاله: 188 تعداد دریافت فایل اصل مقاله: 619 |