
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,379,993 |
تعداد دریافت فایل اصل مقاله | 3,580,060 |
Bifurcation of big periodic orbits through symmetric homoclinics, application to Duffing equation | ||
Journal of Mahani Mathematical Research | ||
دوره 13، شماره 1 - شماره پیاپی 26، بهمن 2023، صفحه 1-11 اصل مقاله (3.43 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2023.20343.1349 | ||
نویسندگان | ||
Liela Soleimani؛ Omid RabieiMotlagh* | ||
Department of Applied Mathematics, University of Birjand, Birjand, Iran | ||
چکیده | ||
We consider a planar symmetric vector field that undergoes a homoclinic bifurcation. In order to study the existence of exterior periodic solutions of the vector field around broken symmetric homoclinic orbits, we investigate the existence of fixed points of the exterior Poincare map around these orbits. This Poincare map is the result of the combination of flows inside and outside the homoclinic orbits. It shows how a big periodic orbit converts to two small periodic orbits by passing through a double homoclinic structure. Finally, we use the results to investigate the existence of periodic solutions of the perturbed Duffing equation. | ||
کلیدواژهها | ||
Poincare map؛ homoclinic bifurcation؛ fixed point؛ periodic solution | ||
مراجع | ||
[1] Antabli M, Boughariou, M, Homoclinic solutions for singular Hamiltonian systems without the strong force condition, Mathematical Analysis and Applications (2018), 1-19, https://doi.org/10.1016/j.jmaa.2018.11.028.
[2] C. Cerda, E. Toon, P. Ubilla, Existence of one homoclinic orbit for second order Hamiltonian systems involving certain hypotheses of monotonicity on the nonlinearities, Non-linear Analysis: Real World Applications vol. 47 (2019), 348{363.
[3] Y. Y. Chen, S. H. Chen, W. Zhao, Constructing explicit homoclinic solution of oscillators: An improvement for perturbation procedure based on nonlinear time transformation, Communications in Nonlinear Science and Numerical Simulation, vol. 48 (2017), 123{139.
[4] C. Chicone, Lyapunov-Schmidt reduction and Melnikov integrals for bifurcation of periodic solutions in coupled oscillators, Publication of university of Missouri (2004),1{34.
[5] K. W. Chung, C. L. Chan, Z. Xu, G. M. Mahmoud, A perturbation-incremental method for strongly nonlinear autonomous oscillators with many degrees of freedom, Nonlinear Dynamics, vol. 28, no. 3 (2002), 243{259.
[6] L. S. Dederick, Implicit functions at a boundary point, Annals of mathematics vol.1, no. 4 (1913-1914),170{178.
[7] G. Deng, D. Zhu Codimension-3 bifurcations of a class of homoclinic loop with saddle-point, vol. 69 (2008), 3761{3773.
[8] P. Glendinning, C. Sparrow, Local and Global Behavior near Homoclinic Orbits, J. Statistical Physics vol. 35 (1984), 645{696.
[9] C. H. He, D. Tian, G. M. Moatimid, H. F. Salman, M. H. Zekry, Hybrid rayleigh{van der pol{dung oscillator: Stability analysis and controller, J. of Low Frequency Noise, Vibration and Active Control: Nonlinear Phenomena, vol. 41, no. 1 (2022), 244{268.
[10] L. Kong, Homoclinic solutions for a higher order di erence equation, Appl. Math. Lett. (2018), https://doi.org/10.1016/j.aml.2018.06.033.
[11] A. P. Kuznetsov, J. P. Roman, Properties of synchronization in the systems of non-identical coupled van der Pol and van der Pol{Dung oscillators. Broadband synchronization, Physica D: Nonlinear Phenomena, vol. 238, no. 16 (2009), 1499{1506.
[12] L. Li, L. Huang Concurrent homoclinic bifurcation and Hopf bifurcation for a class of planar Filippov systems, J. Math. Anal. Appl. vol. 411 (2014), 83{94.
[13] F. Liang, M. Han, X. Zhang, Bifurcation of limit cycles from generalized homoclinic loops in planar piecewise smooth systems, J. Di erential Equations vol. 255 (2013), 4403{4436.
[14] X. Ma, Y. Yu, L. Wang, Complex mixed-mode vibration types triggered by the pitchfork bifurcation delay in a driven van der Pol-Dung oscillator, Applied Mathematics and Computation, vol. 411 (2021), 126522.
[15] X. Ma, D. Xia, W. Jiang, M. Liu, Q. Bi, Compound bursting behaviors in a forced Mathieu-van der Pol-Dung system, Chaos, Solitons & Fractals, vol. 147 (2021), 110967.
[16] J. Palis, J. W. D. Melo, Geometric theory of dynamical systems, Springer, New York, 1982.
[17] A. H. Salas, W. Albalawi, S. A. El-Tantawy, L. S. El-Sherif, Some Novel Approaches for Analyzing the Unforced and Forced Dung{Van der Pol Oscillators, J. Mathematics, vol. 2022 (2022), 2174192.
[18] S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, 2nd ed, springer, 2000.
[19] Y. Xiong, M. Han, Limit cycle bifurcations near homoclinic and heteroclinic loops via stability-changing of a homoclinic loop, Chaos, Solitons and Fractals, vol. 78 (2015),107{117. | ||
آمار تعداد مشاهده مقاله: 1,131 تعداد دریافت فایل اصل مقاله: 1,373 |