
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,379,972 |
تعداد دریافت فایل اصل مقاله | 3,580,052 |
Analytical investigation of fractional differential inclusion with a nonlocal infinite-point or Riemann–Stieltjes integral boundary conditions | ||
Journal of Mahani Mathematical Research | ||
دوره 13، شماره 1 - شماره پیاپی 26، بهمن 2023، صفحه 85-109 اصل مقاله (552.4 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2023.20232.1337 | ||
نویسندگان | ||
I.H. Kaddoura1؛ Sh.M. Al-Issa* 2؛ H. Hamzae1 | ||
1Department of Mathematics, Lebanese International University, Saida, Lebanon | ||
2Department of Mathematics, The International University of Beirut, Saida, Lebanon | ||
چکیده | ||
Here, we investigate the existence of solutions for the initial value problem of fractional-order differential inclusion containing a nonlocal infinite-point or Riemann–Stieltjes integral boundary conditions. A sufficient condition for the uniqueness of the solution is given. The continuous dependence of the solution on the set of selections and on some data is studied. At last, examples are designed to illustrate the applicability of the theoretical results. | ||
کلیدواژهها | ||
Functional integro-differential inclusion؛ fixed point theorem؛ Riemann–Stieltjes integral boundary conditions؛ infinite-point boundary conditions | ||
مراجع | ||
[1] B. Ahmad, S. K. Ntouyas, Nonlocal fractional boundary value problems with slit-strips boundary conditions, Fract. Calc. Appl. Anal., 18 (2015), 261{280.
[2] B. Ahmad, A. Alsaedi, and Y. Alruwaily, On Riemann-Stieltjes integral boundary value problems of Caputo-Riemann-Liouville type fractional integro-di erential equa-tions. Filomat, 34(8) (2020), 2723-2738.
[3] J. P. Aubin, A. Cellina, Di erential inclusions: set-valued maps and viability theory, Springer Science & Business Media, 264 (2012),
[4] Z. Bai, T. Qiu, Existence of positive solution for singular fractional di erential equation. Appl. Math. Comput. 215 (2009), 2761{2767.
[5] A. Cellina, S. Solimini, Continuous extension of selection, Bull. Polish Acad. Sci. Math., 35 (9) (1978).
[6] K. Deimling, Nonlinear Functional Analysis, Courier Corporation, 2010.
[7] N. Kosmatov, A singular boundary value problem for nonlinear di erential equations of fractional order. J. Appl. Math. Comput. 29(1), 125{135 (2009).
[8] A.M.A. El-Sayed , W.G. El-Sayed , S.S. Amrajaa, On a Boundary Value Problem of Hybrid Functional Di erential Inclusion with Nonlocal Integral Condition. Mathematics, 9(21(2021) :2667. https://doi.org/10.3390/math9212667
[9] A.M.A. El-sayed, A.G. Ibrahim, Set-valued integral equations of fractional-orders, Appl. Math. Comput., 118 (2001), 113-121.
[10] A.M.A. El-Sayed, H.M.H. Hashem, Sh.M Al-Issa, Existence of solutions for an ordinary secondorder hybrid functional di erential equation, Ad. Di erence Equ. 2021 (2021), Paper No. 29.
[11] A.M.A. El-Sayed, H.H.G. Hashem, Sh.M. Al-Issa, Analytical study of some self-referred or state dependent functional equations. Methods Funct. Anal. Topol. 28(1) (2022), 50-57.
[12] A.M.A. El-Sayed, Sh.M Al-Issa, Monotonic integrable solution for a mixed type integral and di erential inclusion of fractional orders, Int. J. Di er. Equ. Appl., 18(1) (2019), 1{9.
[13] V. Lakshmikantham, S. Leela, Di erential and Integral Inequalities, Academic press, New York-London, 1 (1969).
[14] C. Nuchpong, S.K. Ntouyas, A. Samadi, Boundary value problems for Hilfer type sequential fractional di erential equations and inclusions involving Riemann{Stieltjes integral multi-strip boundary conditions. Adv Di er Equ 2021, 268 (2021).
[15] H.M. Srivastava , A.M.A El-Sayed, FM. A Gaafar , Class of Nonlinear Boundary Value Problems for an Arbitrary Fractional-Order Di erential Equation with the Riemann-Stieltjes Functional Integral and In nite-Point Boundary Conditions. Symmetry.2018;10(10):508.
[16] H.M. Srivastava, A.M.A. El-Sayed, H.H.G. Hashem, Sh.M. Al-Issa, Analytical investigation of nonlinear hybrid implicit functional di erential inclusions of arbitrary fractional orders, Rev. Real Acad. Cienc. Exactas Fis. Nat. -A: Mat. 2022 (2022) 116. | ||
آمار تعداد مشاهده مقاله: 1,058 تعداد دریافت فایل اصل مقاله: 1,100 |