
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,379,991 |
تعداد دریافت فایل اصل مقاله | 3,580,057 |
Stability of Deeba and Drygas functional equations in non-Archimedean spaces | ||
Journal of Mahani Mathematical Research | ||
دوره 13، شماره 1 - شماره پیاپی 26، بهمن 2023، صفحه 167-180 اصل مقاله (347.5 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2023.20433.1356 | ||
نویسندگان | ||
Davood Khatibi Aghda؛ Seyed Mohammad Sadegh Modarres Mosaddegh* | ||
Department of Mathematical Sciences, Yazd University, Yazd, Iran | ||
چکیده | ||
In this paper, we use new techniques to prove Hyers-Ulam and Hyers-Ulam-Rasiass stability of Deeba, Drygas and logarithmic functional equations in non-Archimedean normed spaces. We generalize some earlier results connected with the stability of these functional equations and inequalities. In addition, we provide some examples to clarify the definitions and theorems. | ||
کلیدواژهها | ||
Functional equations؛ Hyers-Ulam stability؛ Hyers-Ulam-Rassias stability؛ non-Archimedean normed spaces | ||
مراجع | ||
[1] Abdollahpour, M.R., & et al. (2019). Hyers-Ulam stability of hypergeometric differential equations, Aequationes Math., 93(4), 691–698. https://doi.org/10.1007/s00010-018-0602-3
[2] Abdollahpour,M.R., & et al. (2016). Hyers–Ulam stability of associated Laguerre differential equations in a subclass of analytic functions, J. Math. Anal. Appl., 437(1), 605–612. https://doi.org/10.1016/j.jmaa.2016.01.024
[3] Aoki, T. (1950). On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2, 64–66. https://doi.org/10.2969/jmsj/00210064
[4] Azadi Kenari, H. (2011). Non-Archimedean stability of Cauchy–Jensen type functional equation, Int. J. Nonlinear Anal. Appl., 2(2), 92–102. https://doi.org/10.22075/IJNAA.2011.104
[5] Badora R. (2006). On approximate derivations, Math. Inequal. Appl., 2(1), 167–173. https://doi.org/10.22075/IJNAA.2011.104
[6] El-Hady, El., & Brzdek, J. (2022). On Ulam stability of functional equations in 2-normed spaces—A survey, Symmetry, 13, 2200–2218. https://doi.org/10.1007/s00025-023-01840-7
[7] Dutta, H., Senthil Kumar, B.V., & Sabarinathan S. (2022). Fuzzy stabilities of a new hexic functional equation in various spaces, An. Şţ. Univ. Ovidius Constanţa, 30(3), 143–171. https://doi.org/10.2478/auom-2022-0038
[8] Yavuz, M., Coşar, F., Günay, F. & Özdemir, F. (2021). A New Mathematical Modeling of the COVID-19 Pandemic Including the Vaccination Campaign, Open Journal of Modelling and Simulation, 9, 299–321. https://doi.org/10.3390/math11010142
[9] Kannappan, Pl. (1995). Quadratic functional equation and inner product spaces, Results Math. 27, 368–372. https://doi.org/10.1007/BF03322841
[10] Kumar, B.V.S., Al-Shaqsi, K., & Dutta, H. (2021). Approximate reciprocal Lie ⋆-derivations, Soft Comput., 25, 14969–14977. https://doi.org/10.1007/s00500-021-06395-9
[11] Kumar, B.V.S., Dutta H., & Sabarinathan S. (2021). Stabilities and instabilities of an advanced quartic functional equation in various normed spaces, Math. Methods Appl. Sci. 44(14), 11469–11481. https://doi.org/10.1002/mma.7506
[12] Eshaghi Gordji, M., & Khodaei, H. (2010). Stability of Functional Equations, LAP Lambert Academic Publishing, Saarbrucken. ISBN:9783843381918
[13] Forti, G.L., Shulman, E. (2020). A comparison among methods for proving stability, Aequationes Math., 94, 547–574. https://doi.org/10.1007/s00010-019-00679-0
[14] Gilanyi, A. (2001). Eine zur parallelogrammgleichung äquivalente ungleichung, Aequationes Math., 62(3), 303–309. https://doi.org/10.1007/PL00000156
[15] Goss, D. (2012). Basic Structures of Function Field Arithmetic, Springer Science & Business Media, 35, ISBN:9783642614804, 3642614809.
[16] Hyers, D.H. (1941). On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27(4), 222–224. https://doi.org/10.1073/pnas.27.4.222
[17] Jung, S.-M. (2011). Hyers–Ulam–Rassias stability of functional equations in nonlinear analysis, Springer Optimization and Its Applications. https://doi.org/10.1007/978-1-4419-9637-4
[18] Moslehian, M.S. (2007). Stability of functional equations in non-Archimedean spaces, Appl. Anal. Discrete Math., 1(2), 325–334. https://doi.org/10.2298/AADM0702325M
[19] Nie, D., Niazi, A.U.K., & Ahmed, B. (2020). On local generalized Ulam–Hyers stability for nonlinear fractional functional differential equation, Math. Prob. Eng. https://doi.org/10.1155/2020/3276873
[20] Park, C., & Rassias, J.M. (2009). Stability of the Jensen-type functional equation in C∗-algebras: a fixed point approach, Abstr. Appl. Anal. https://doi.org/10.1155/2009/360432.
[21] Perez-Garcia C. & Schikhof, W.H. (2012). New examples of non-Archimedean Banach spaces and applications, Canad. Math. Bull. 55(4), 821–829. https://doi.org/10.4153/CMB-2011-133-2
[22] Rassias, Th.M. (1978). On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(2), 297–300. https://doi.org/10.2307/2042795
[23] Sahoo P.K., & Kannappan, P.L. (2011), Introduction to Functional Equations, CRC Press, Boca Raton, Florida. ISBN: 1138114553
[24] Schneider, P. (2002). Nonarchimedean Functional Analysis, Springer Berlin, Heidelberg. ISBN: 978-3-642-07640-4
[25] Senthil Kumar B.V. & Sabarinathan, S. (2022). A fixed point approach to non-Archimedean stabilities of IQD and IQA functional equations, Thai J. Math., 20(1),69–78. ISSN: 1686-0209
[26] Ulam, S.M. (1964). Problems in Modern Mathematics, Science Editions, John Wiley Sons, Inc., New York.
[27] Vladimirov, V.S., Volovichmm I.V., & Zelenov, E.I. (1994). p-Adic Analysis and Mathematical Physics, Nauka, Moscow. https://doi.org/10.1142/1581 | ||
آمار تعداد مشاهده مقاله: 248 تعداد دریافت فایل اصل مقاله: 333 |