
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,380,003 |
تعداد دریافت فایل اصل مقاله | 3,580,069 |
A note on characterization of higher derivations and their product | ||
Journal of Mahani Mathematical Research | ||
دوره 13، شماره 1 - شماره پیاپی 26، بهمن 2023، صفحه 403-415 اصل مقاله (509.02 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2023.21376.1432 | ||
نویسنده | ||
Sayed Khalil Ekrami* | ||
Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran | ||
چکیده | ||
There exists a one to one correspondence between higher derivations $\{d_n\}_{n=0}^\infty$ on an algebra $\mathcal{A}$ and the family of sequences of derivations $\{\delta_n\}_{n=1}^\infty$ on $\mathcal{A}$. In this paper, we obtain a relation that calculates each derivation $ \delta_n (n \in \mathbb{N})$ directly as a linear combination of products of terms of the corresponding higher derivation $\{d_n\}_{n=0}^\infty$. Also, we find the general form of the family of inner derivations corresponding to an inner higher derivation. We show that for every two higher derivations on an algebra $\mathcal{A}$, the product of them, is a higher derivation on $\mathcal{A}$. Also, we prove that the product of two inner higher derivations, is an inner higher derivation. | ||
کلیدواژهها | ||
derivation؛ higher derivation؛ inner higher derivation | ||
مراجع | ||
[1] Cortes, W., & Haetinger, C. (2005). On Jordan generalized higher derivations in rings. Turk. J. Math., 29, 1{10.
[2] Ekrami, S. Kh. (2022). Approximate orthogonally higher ring derivations. Control Optimization App. Math., 7(1), 93{106. doi: 10.30473/coam.2021.59727.1166
[3] Ekrami, S. Kh. Characterization of Hilbert C-module Higher Derivations. Georgian Mathematical Journal, accepted. [4] Ekrami, S. Kh. (2022). Jordan higher derivations, a new approach. Journal Algebraic Systems, 10(1), 167{177. [5] Haetinger, C. (2002). Higher derivations on Lie ideals. Tendencias em Matematica Aplicada e Computacional, 3, 141{145.
[6] Hasse, H., & Schmidt, F. K. (1937). Noch eine Begrudung der theorie der hoheren Di erential quotienten in einem algebraischen Funtionenkorper einer Unbestimmeten. J. Reine Angew. Math., 177, 215-237.
[7] Jewell, N. P. (1977). Continuity of module and higher derivations. Paci c J. Math., 68, 91{98.
[8] Johnson, B. E. (2001). Local derivations on C-algebras are derivations. Trans. Amer. Math. Soc., 353, 313{325.
[9] Johnson, B. E., & Sinclair, A. M. (1968). Continuity of derivations and a problem of Kaplansky. Amer. J. Math., 90, 1067{1073.
[10] Loy, R. J. (1973). Continuity of higher derivations. Proc. Amer. Math. Soc., 5, 505{510.
[11] Mirzavaziri, M. (2010), Characterization of higher derivations on algebras. Comm. Algebra, 38, 981{987.
[12] Mirzavaziri, M., Naranjani, K., & Niknam, A. (2010). Innerness of higher derivations. Banach J. Math. Anal., 4(2), 99{110. DOI: 10.15352/bjma/1297117246
[13] Nowicki, A. (1984). Inner derivations of higher orders. Tsukuba J. Math., 8, 219{225.
[14] Roy, A., & Sridharan, R. (1968). Higher derivations and central simple algebras. Nagoya Math. J., 32, 21{30.
[15] Xu, S., & Xiao, Z. (2014). Jordan higher derivation revisited. Gulf J. Math., 2(1), 11{21. | ||
آمار تعداد مشاهده مقاله: 3,169 تعداد دریافت فایل اصل مقاله: 2,304 |