
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,380,003 |
تعداد دریافت فایل اصل مقاله | 3,580,074 |
Gradient Ricci Bourguignon solitons on perfect fluid space-times | ||
Journal of Mahani Mathematical Research | ||
دوره 13، شماره 2 - شماره پیاپی 27، آبان 2024، صفحه 1-12 اصل مقاله (450.85 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2023.20705.1376 | ||
نویسندگان | ||
Sakineh Hajiaghasi* ؛ Shahroud Azami | ||
Department of Pure Mathematics, Imam Khomeini International University, Qazvin, Iran | ||
چکیده | ||
The main purpose of the present paper is about characterizing the properties of the perfect fluid space-time that admits the gradient Ricci-Bourguignon soliton. This gives some results about the stability of the energy-momentum tensor and also under some conditions pursues that a perfect fluid space-time is Ricci symmetric. As a special case, when a perfect fluid space-time is equipped with the Ricci-Bourguignon soliton which has Ricci biconformal vector field, we show that the metric of this space is Einstein. | ||
کلیدواژهها | ||
Perfect fluid space-time؛ Gradient Ricci soliton؛ Gradient Ricci Bourguignon soliton؛ GRW space-time | ||
مراجع | ||
1] Alas, L., Romero, A., & Sanchez, M. (1995). Uniqeness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes. Gen. Relat. Gravit. 27, 71-84. https://doi.org/10.1007/BF02105675
[2] Alas, L., Romero, A., & Sanchez, M. (1995). Compact spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes. In Geometry and Topology of sub-manifolds VII (River Edge NJ, USA, World Scienti c) 67, https://doi.org/10.48550/arXiv.1109.6477 [3] Azami, A. (2021). Complete Ricci-Bourguignon solitons on Finsler manifolds. Journal of Finsler Geometry and its Applications, pp. 108-117. https://doi.org/10.22098/jfga.2021.1268
[4] Barbosa, E., & Ribeiro, E. (2013). On conformal solutions of the Yamabe ow. Arch. Math. pp. 79-89. https://doi.org/10.1007/s00013-013-0533-0
[5] Blaga, A.M. (2020). Solitons and geometrical structures in a perfect uid spacetime. Rocky Mountain J. Math. 50, 41-53. https://doi.org/10.48550/arXiv.1705.04094
[6] Bourguignon, J. (1981). Ricci curvature and Einstein metrics. Global di erential geometry and global analysis, pp. 42-63. Part of the Lecture Notes in Mathematics book series (LNM,volume 838).
[7] Cao, H., Sun, X., & Zhang, Y. (2012). On the structure of gradient Yamabe solitons. Math. Res. Lett. 19, no. 04, 767-774. https://doi.org/10.48550/arXiv.1108.6316
[8] Catino, G., Cremaschi, L., Djadli, Z., Mantegazza, C., & Mazzieri, L. (2017). The Ricci-Bourguignon ow. Paci c J. Math. 286, pp. 337-370. https://doi.org/10.48550/arXiv.1507.00324 [9] Catio, G., Mazzieri, L., & Mongodi, S. (2015). Rigidity of gradient Einstein shrinkers. Commun. Contemp. Math. 17, https://doi.org/10.48550/arXiv.1307.3131
[10] Catino, G., & Mazzieri, L. (2016). Gradient Einstein solitons. Nonlinear Anal. 132, 66-94. https://doi.org/10.48550/arXiv.1201.6620
[11] Chaki, M.C., & Guha, S. (1996). Spacetime with covariant constant energy momentum tensor. Int. J. Theor Phys. 35 (5), 1027-1032. https://doi.org/10.1007/BF02302387
[12] Chand De, U., Sardar, A., & Sarkar, A. (2021). Some conformal vector elds and conformal Ricci solitons on N (k)-contact metric manifolds, AUT Journal of Mathematics and Computing, 2(1) 61-71. https://doi.org/10.22060/ajmc.2021.19220.1043
[13] Chaubey, S.K. (2020). Characterization of perfect uid spacetimes admitting gradient -Ricci and gradient Einstein solitons. Journal of Geometry and Physics, Vol 162, https://doi.org/10.1016/j.geomphys.2020.104069
[14] Chen, B.Y. (2011). Pseudo-Riemannian Geometry, -invariants and Applications. (World Scienti c), https://doi.org/10.1142/8003
[15] De, U.C., Chaubey, S.K., & Shenawy, S.(2021). Perfect uid spacetimes and Yamabe solitons. Journal of Mathematical Physics, (62) 032501, https://doi.org/10.1063/5.0033967
[16] De, U.C., & Velimirovic, L. (2015). Spacetimes with semisymmetric energy momentum tensor. Int. J. Theor Phys. 54, pp. 1779-1783. https://doi.org/10.1007/s10773-014-2381-5
[17] Dwivedi, Sh. (2020). Some results on Ricci-Bourguignon and Ricci-Bourguignon almost solitons. Cambridge University Press: Vol 64, 3, 591-604. https://doi.org/10.48550/arXiv.1809.11103
[18] Ghosh, A. (2020). Yamabe soliton and Quasi Yamabe soliton on Kenmotsu manifold. Mathematica Slovaca, pp. 151-160. https://doi.org/10.1515/ms-2017-0340
[19] Guilfoyle, B.S., & Nolan, B.C. (1998). Yang's gravitational theory. Gen. Relativ. Gravitation, 30 (3), 473-495. https://doi.org/10.48550/arXiv.gr-qc/9801023
[20] Guler, S., & Crasmareanu, M. (2019). Ricci-Yamabe maps for Riemannian ow and their volume variation and volume entropy. Tunk. J. Math. pp. 2361-2641. http://doi.org/10.3906/mat-1902-38
[21] Gornits, T. (2017). Why + 3p = 0 is the equation of state of the univers? http://doi.org/10.13140/RG.2.2.27468.00649.
[22] Hamilton, R.S. (1982). Three Manifold with positive Ricci curvature. J. Di erential Geom. pp. 255-306. http://doi.org/10.4310/jdg/1214436922
[23] Hamilton, R.S. (1988). The Ricci ow on surfaces. Contemporary Mathematics. pp. 237-261. https://doi.org/10.1090/conm/071/954419
[24] Mantica, C.A., De, U.C., Suh, Y.J., & Molinari, L.G. (2019). Perfect uid spacetime with harmonic generalized curvature tensor. Osaka J.Math. 56, 173-182. https://doi.org/10.18910/71142
[25] Mantica, C.A., Molinari, L.G., & De, U.C. (2016). A condition for a perfect-uid space-time to be a generalized Robertson-Walker space-time. J. Math Phys. 57, 022508. https://doi.org/10.48550/arXiv.1508.05883
[26] O'Neill, B. (1983). Semi-Riemannian Geometry with Applications to Relativity (Academic Press, New York).
[27] Patra, D.S., Ali, A., & Mofarreh, F.(2022). Characterizations of Ricci-Bourguignon almost solitons on pseudo-Riemannian manifolds. Mediterr. J. Math. 19, 176. https://doi.org/10.1007/s00009-022-02085-4
[28] Roy, S., Dey, S., & Bhattacharyya, A. (2021). Geometrical structure in a perfect uid spacetime with conformal Ricci-Yamabe soliton. https://doi.org/10.48550/arXiv.2105.11142.
[29] Sameh, S., Chand, D.U., Turki, N.B., Suliman, A., & Abdelhameed, S.A. (2021). Investigation pf pseudo-Ricci symmetric spacetime in Gray's subspace, Journal of mathematics, Cairo. https://doi.org/10.1155/2021/6188097
[30] Siddiqui, A.N., & Siddiqi, M.D. (2021). Almost Ricci-Bourguignon solitons and geometrical structure in a relativistic perfect uid spacetime. Balkan Journal of Geometry and its Applications, Vol.26, No. 2, pp. 126-138. t: https://www.researchgate.net/publication/350062360
[31] Sharma, R., & Ghosh, A. (2010). Perfect uid space-time whose energy-momentum tensor is conformal Killing. J. Math. Phys. 51, 022504-5. https://doi.org/10.1063/1.3319562
[32] Stephani, H. (1982). General Relativity-An Introduction to the theory of Gravitational eld. Combridge Uiversity Press, Combridge.
[33] Zengin, F.O. (2012). M-projectively at spacetimes. Math. Reports 14, 363-370. | ||
آمار تعداد مشاهده مقاله: 246 تعداد دریافت فایل اصل مقاله: 305 |