
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,380,003 |
تعداد دریافت فایل اصل مقاله | 3,580,074 |
Using Frames of Subspaces in Galerkin and Richardson Methods for Solving Operator Equations | ||
Journal of Mahani Mathematical Research | ||
دوره 4، شماره 1، مرداد 2015، صفحه 25-37 اصل مقاله (108.44 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmrc.2017.1655 | ||
نویسندگان | ||
Hassan Jamali* ؛ Mohsen Kolahdouz | ||
Department of Mathematics, Faculty of Mathematics and computer Sciences, Vali-e-Asr University of Rasanjan, Rafsanjan, Iran. | ||
چکیده | ||
In this paper, two iterative methods are constructed to solve the operator equation $ Lu=f $ where $ L:H\rightarrow H $ is a bounded, invertible and self-adjoint linear operator on a separable Hilbert space $ H $. By using the concept of frames of subspaces, which is a generalization of frame theory, we design some algorithms based on Galerkin and Richardson methods, and then we investigate the convergence and optimality of them. | ||
کلیدواژهها | ||
Hilbert spaces؛ Operator equation؛ Frames of subspaces؛ Richardson method؛ Galerkin method | ||
آمار تعداد مشاهده مقاله: 72 تعداد دریافت فایل اصل مقاله: 51 |