
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,380,001 |
تعداد دریافت فایل اصل مقاله | 3,580,066 |
Commuting Conjugacy Class Graph of The Finite $2-$Groups $G_n(m)$ and $G[n]$ | ||
Journal of Mahani Mathematical Research | ||
دوره 13، شماره 2 - شماره پیاپی 27، آبان 2024، صفحه 67-71 اصل مقاله (489.58 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2023.21431.1436 | ||
نویسندگان | ||
Mohammad Ali Salahshour* 1؛ Ali Reza Ashrafi2 | ||
1Department of Mathematics, Savadkooh Branch, Islamic Azad University, Savadkooh, Iran | ||
2Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran | ||
چکیده | ||
Suppose $G$ is a finite non-abelian group and $\Gamma(G)$ is a graph with non-central conjugacy classes of $G$ as its vertex set. Two vertices $L$ and $K$ in $\Gamma(G)$ are adjacent if there are $a \in L$ and $b \in K$ such that $ab = ba$. This graph is called the commuting conjugacy class graph of $G$. The purpose of this paper is to compute the commuting conjugacy class graph of the finite $2-$groups $G_n(m)$ and $G[n]$. | ||
کلیدواژهها | ||
Commuting conjugacy class graph؛ conjugacy class؛ center | ||
مراجع | ||
[1] A. R. Ashra and M. A. Salahshour, Counting Centralizers of a Finite Group with an Application in Constructing the Commuting Conjugacy Class Graph, Communications in Algebra, 51 (3) (2023), 1105{1116.
[2] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[3] M. Herzog, P. Longobardi and M. Maj, On a commuting graph on conjugacy classes of groups, Comm. Algebra, 37 (10) (2009) 3369{3387.
[4] A. R. Jamali, Some new non-abelian 2-groups with abelian automorphism groups, J. Group Theory, 5 (2002) 53{57.
[5] G. A. Miller, A non-abelian group whose group of isomorphisms is abelian, Messenger Math., 43 (1913) 124{125.
[6] A. Mohammadian, A. Erfanian, M. Farrokhi D. G. and B. Wilkens, Triangle-free commuting conjugacy class graphs, J. Group Theory, 19 (3) (2016) 1049{1061.
[7] D. J. S. Robinson, A Course in the Theory of Groups, 2nd ed., Springer, Berlin, 1982.
[8] R. R. Struik, Some non-abelian 2-groups with abelian automorphism groups, Arch. Math., 39 (1982) 299{302. | ||
آمار تعداد مشاهده مقاله: 167 تعداد دریافت فایل اصل مقاله: 198 |