
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,380,005 |
تعداد دریافت فایل اصل مقاله | 3,580,078 |
Module structures and filters on semihoops | ||
Journal of Mahani Mathematical Research | ||
دوره 14، شماره 2 - شماره پیاپی 32، مرداد 2025، صفحه 39-57 اصل مقاله (501.13 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2024.24069.1698 | ||
نویسندگان | ||
Hao Chen1؛ Xiao Long Xin* 2 | ||
1School of Science, Xi'an Polytechnic University, Xi'an, China | ||
2School of Mathematics, Northwest University, Xi'an, China | ||
چکیده | ||
In this paper, we study modules and filters on semihoops. Firstly, we introduce the definition of modules on semihoops and give some examples to illustrate it. Also, we get some significant results related to modules on semihoops. If the semihoop $G$ can generate an Abelian group, then $G$ is a module of any subalgebra $S$ of the semihoop $G$. Then, we use modules and filters to investigate the relationship between modules and semihoops regarding quotient algebras. Secondly, by introducing the definitions of prime submodules and torsion free modules on semihoops, we explore the relationship among prime modules, filters, and torsion free modules. Moreover, we discuss the relationship between the images and inverse images under the homomorphism of semihoops and modules, respectively. Finally, we define multiplication modules and comultiplication modules on semihoops. We study the relationship among multiplication modules and submodules on semihoops and provide the condition for comultiplication modules to satisfy the descending chain condition. | ||
کلیدواژهها | ||
semihoop؛ filter؛ (prime) module؛ torsion free module؛ (co)multiplication module | ||
مراجع | ||
[1] Abojabal, H. A. S., Aslam, M., & Thaheem, A. B. (1994). On actions of BCK-algebras on groups. Pan American Mathematical Journal, 4: 727-735.
[2] Aguzzoli, S., Flaminio, T., & Ugolini, S. (2017). Equivalences between subcategories of MTL-algebras via Boolean algebras and prelinear Semihoops. Journal of Logic and Computation, 27(8): 2525-2549. https://doi.org/10.1093/logcom/exx014
[3] Bakhshi, M. (2011). Fuzzy set theory applied to BCK-modules. Advances in Fuzzy Sets and Systems, 2(8): 61-87.
[4] Birkho , G. (1967). Lattice Theory. American Mathematical Colloquium Publications (third edition).
[5] Borzooei, R. A., & Kologani, M. A. (2015). Local and perfect semihoops. Journal of Intelligent & Fuzzy Systems, 29(1), 223-234. https://doi.org/10.3233/IFS-151589
[6] Borzooei, R. A., & Goraghani, S. S. (2014). Prime submodules in extended BCK-module. Italian Journal of Pure and Applied Mathematics, 33: 433-444.
[7] Borzooei, R. A., & Goraghani, S. S. (2015). Free Extended BCK-Module. Iranian Journal of Mathematical Sciences and Informatics, 10(2), 29-43.
[8] Borzooei, R. A., Sabetkish, M., & Kologani, M. A. (2024). Module Structures on Hoops. New Mathematics and Natural Computation (NMNC), 20(03), 601-619. https://doi.org/10.1142/S1793005724500339
[9] Bosbach, B. (1969). Komplementare halbgruppen. Axiomatik und arithmetik. Fundamenta Mathematicae, 64(3), 257-287. https://doi.org/10.4064/FM-64-3-257-287
[10] Bosbach, B. (1970). Komplementare halbgruppen kongruenzen und quotienten. Fundamenta Mathematicae, 69(1), 1-14. https://doi.org/10.4064/FM-69-1-1-14
[11] Di Nola, A., Flondor, P., & Leustean, I. (2003).MV -modules. Journal of Algebra, 267(1), 21-40. https://doi.org/10.1016/S0021-8693(03)00332-6
[12] Esteva, F., Godo, L., Hajek, P., & Montagna, F. (2003). Hoops and fuzzy logic. Journal of Logic and Computation, 13(4), 532-555. https://doi.org/10.1093/logcom/13.4.532
[13] Fu, Y. L., Xin, X. L., & Wang, J. T. (2018). State maps on semihoops. Open Mathematics, 16(1), 1061-1076. https://doi.org/10.1515/math-2018-0089
[14] Goraghani, S. S., & Borzooei, R. A. (2024). L-Modules. Bulletin of the Section of Logic, 53(1), 125-144. https://doi.org/10.18778/0138-0680.2023.27
15] Kashif, A., & Aslam, M. (2015). Topology On BCK-Modules. General Mathematics. https://doi.org/10.48550/arXiv.1509.01234
[16] Mona, A. K., Nader, K., & Borzooei, R. A. (2017). On topological semi-hoops. Quasigroups and Related Systems, 37(2), 165-179.
[17] Motahari, N., & Roudbari, T. (2014). Prime BCK-submodules of BCK-modules. Acta Universitatis Apulensis, (37), 93-100.
[18] Niu, H. L., & Xin, X. L. (2019). Tense operators on bounded semihoops. Pure Appl. Math, 35(3), 325-335.
[19] Niu, H. L., Xin, X. L., & Wang, J. T. (2020). Ideal theory on bounded semihoops. Italian Journal of Pure and Applied Mathematics, 26, 911-925.
[20] Wang, M., & Zhang, X. H. (2024). Characterizations of semihoops based on derivations. Applied Mathematics-A Journal of Chinese Universities, 39(2), 291-310. https://doi.org/10.1007/s11766-024-4386-z
[21] Wang, Z. Y., Xin, X. L., & Yang, X. F. (2024). L-fuzzy ideal theory on bounded semihoops. Italian Journal of Pure and Applied Mathematics, 51: 472-495.
[22] Zhang, L. J., & Xin, X. L. (2019). Derivations and di erential lters on semihoops. Italian Journal of Pure and Applied Mathematics, 42, 916-933. | ||
آمار تعداد مشاهده مقاله: 166 تعداد دریافت فایل اصل مقاله: 128 |