
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,380,005 |
تعداد دریافت فایل اصل مقاله | 3,580,083 |
The coalescence of multi-wheel and starlike graphs is DLS | ||
Journal of Mahani Mathematical Research | ||
دوره 14، شماره 2 - شماره پیاپی 32، مرداد 2025، صفحه 99-111 اصل مقاله (972.67 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2024.23501.1658 | ||
نویسندگان | ||
Mohammad Hasan Ahangarani Farahani؛ Gholam Hossein Fath-Tabar* | ||
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran | ||
چکیده | ||
The Laplacian spectrum of a graph is obtained by taking the difference of the adjacency spectrum from the diagonal matrix of degrees. If a graph has a unique Laplacian spectrum, it means that it can be identified by this spectrum, it is called $DLS$. In this article, we first introduce the graph resulting from the integration of a starlike tree and a multi-wheel graph at the vertices with the maximum degree of these two graphs. Then, we check whether it is $DLS$. | ||
کلیدواژهها | ||
Laplacian spectrum؛ DLS graph؛ Coalescence of graphs | ||
مراجع | ||
[1] Feng, L., & Yu, G. (2007). No starlike trees are Laplacian cospectral. Publikacije Elektrotehnickog fakulteta. Serija Matematika, 46-51. https://www.jstor.org/stable/43666402
[2] Grone, R., & Merris, R. (1994). The Laplacian spectrum of a graph II. SIAM Journal on discrete mathematics, 7(2), 221-229. https://doi.org/10.1137/S0895480191222653
[3] Guo, J. M. (2006). The e ect on the Laplacian spectral radius of a graph by adding or grafting edges. Linear Algebra and its applications, 413(1), 59-71. https://doi.org/10.1016/j.laa.2005.08.002
[4] Liu, F., & Huang, Q. (2013). Laplacian spectral characterization of 3-rose graphs. Linear Algebra and its Applications, 439(10), 2914-2920. https://doi.org/10.1016/j.laa.2013.07.029
[5] Liu, M., Zhu, Y., Shan, H., & Das, K. C. (2017). The spectral characterization of butter y-like graphs. Linear Algebra and its Applications, 513, 55-68. https://doi.org/10.1016/j.laa.2016.10.003
[6] Lotker, Z. (2007). Note on deleting a vertex and weak interlacing of the Laplacian spectrum. The Electronic Journal of Linear Algebra, 16, 68-72. http://eudml.org/doc/129123
[7] Merris, R. (1998). A note on Laplacian graph eigenvalues. Linear algebra and its applications, 285(1-3), 33-35. https://doi.org/10.1016/S0024-3795(98)10148-9
[8] Van Dam, E. R., & Haemers, W. H. (2009). Developments on spectral characterizations of graphs. Discrete Mathematics, 309(3), 576-586. https://doi.org/10.1016/j.disc.2008.08.019
[9] Van Dam, E. R., & Haemers, W. H. (2003). Which graphs are determined by their spectrum?. Linear Algebra and its applications, 373, 241-272. https://doi.org/10.1016/S0024-3795(03)00483-X
[10] Wen, F., Huang, Q., Huang, X., & Liu, F. (2015). The spectral characterization of wind-wheel graphs. Indian Journal of Pure and Applied Mathematics, 46, 613-631. https://doi.org/10.1007/s13226-015-0141-8
[11] Zhang, Y., Liu, X., & Yong, X. (2009). Which wheel graphs are determined by their Laplacian spectra?. Computers & Mathematics with Applications, 58(10), 1887-1890. https://doi.org/10.1016/j.camwa.2009.07.028 | ||
آمار تعداد مشاهده مقاله: 121 تعداد دریافت فایل اصل مقاله: 114 |