
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,380,003 |
تعداد دریافت فایل اصل مقاله | 3,580,072 |
European Lookback option pricing with floating strike price under fractional Black-Scholes models | ||
Journal of Mahani Mathematical Research | ||
دوره 14، شماره 2 - شماره پیاپی 32، مرداد 2025، صفحه 113-135 اصل مقاله (685.02 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2025.23656.1672 | ||
نویسندگان | ||
Maryam Rezaei Mirarkolaei؛ Ahmadreza Yazdanian* | ||
Faculty of Finance Sciences, Kharazmi University, Tehran, Iran | ||
چکیده | ||
One of the most famous path-dependent options is the Lookback option. This option is a useful financial instrument to hedge against the risks associated with high volatility in the market. Since empirical studies on the statistical properties of logarithmic returns show the dependence of returns and stock price volatilities on different days; we need a suitable model for pricing the Lookback option to illustrate this phenomenon. Partial differential equations with fractional order derivatives can be useful tools to describe the long memory effect in the financial markets. Hence, we want to price the European floating strike Lookback option (FSLO) under fractional Black-Scholes (FBS) models using a numerical method: implicit difference scheme (IDS). Also, the stability and convergence analysis of the proposed method are investigated using Fourier series expansion. Numerical results are provided to show the efficiency of the method. | ||
کلیدواژهها | ||
Fractional Black-Scholes equation؛ Lookback option؛ Path-dependent option؛ Implicit difference scheme | ||
مراجع | ||
[1] Andersen, TG, & Bollerslev, T. (1997). Heterogeneous information arrivals and return volatility dynamics: Uncovering the long-run in high frequency returns. The Journal of Finance, 52(3), 975{1005. https://doi.org/10.1111/j.1540-6261.1997.tb02722.x
[2] Carr, P., & Wu, L. (2003). The nite moment log stable process and option pricing. The Journal of Finance, 58(2), 753{777. https://doi.org/10.1111/1540-6261.00544
[3] Chen, C., Wang, Z., & Yang, Y., (2019). A new operator splitting method for American options under fractional Black-Scholes models. Computers and Mathematics with Applications, 77(8), 2130{2144. https://doi.org/10.1016/j.camwa.2018.12.007
[4] Chen, Q., Zhang, Q., & Liu, C. (2019). The pricing and numerical analysis of Lookback options for mixed fractional Brownian motion. Chaos, Solitons and Fractals, 128, 123{128. https://doi.org/10.1016/j.chaos.2019.07.038
[5] Cheridito, P. (2003). Arbitrage in fractional Brownian motion models. Finance and Stochastics, 7(4), 533{553. https://doi.org/10.1007/s007800300101 [6] Chung, SL, Huang, YT, Shih, PT, & Wang, JY (2019). Semistatic hedging and pricing American oating strike Lookback options. Journal of Futures Markets, 39(4), 418{434. https://doi.org/10.1002/fut.21986
[7] Conze, A. (1991). Path dependent options: The case of Lookback options. The Journal of Finance, 46(5), 1893{1907. https://doi.org/10.1111/j.1540-6261.1991.tb04648.x
[8] David, A. (2004). Levy processes and stochastic calculus. Cambridge University Press, London. https://doi.org/10.1017/CBO9780511755323
[9] Ding, Z., Granger, C., & Engle, R. (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance, 1(1), 83{106. https://doi.org/10.1016/0927-5398(93)90006-D
[10] Elliott, RJ, & Hoek, JVD (2003). A general fractional white noise theory and applications to nance. Mathematical Finance, 13(2), 301{330. https://doi.org/10.1111/1467-9965.00018
[11] Fallah, S., & Mehrdoust, F. (2019). On the existence and uniqueness of the solution to the double Heston model equation and valuing Lookback option. Journal of Computational and Applied Mathematics, 350, 412{422. https://doi.org/10.1016/j.cam.2018.10.045
[12] Farhadi, A., Salehi, M., & Erjaee, GH (2018). A new version of Black-Scholes equation presented by time-fractional derivative. Iranian Journal of Science and Technology, Transactions A: Science, 42(4), 2159{2166. https://doi.org/10.1007/s40995-017-0244-7
[13] Goldman, MB, Sosin, HB, & Gatto, MA (1979). Path dependent options: Buy at the low, sell at the high. The Journal of Finance, 34(5), 1111{1127. https://doi.org/10.2307/2327238
[14] Hashemi, SAS, Saeedi, H., & Bastani, AF (2024). A hybrid Chelyshkov wavelet- nite di erences method for time-fractional black-Scholes equation. Journal of Mahani Mathematical Research, 13(2), 423{452. https://doi.org/10.22103/jmmr.2024.22371.1526
[15] Hu, YZ, & ?ksendal, B. (2003). Fractional white noise calculus and applications to nance. In nite Dimensional Analysis, Quantum Probability and Related Topics, 6(1), 1{32. https://doi.org/10.1142/S0219025703001110 [16] Jumarie, G. (2008). Stock exchange fractional dynamics de ned as fractional exponential growth driven by Gaussian white noise. Application to fractional Black-Scholes equations. Insurance: Mathematics and Economics, 42(1), 271{287. https://doi.org/10.1016/j.insmatheco.2007.03.001
[17] Kim, KI, Park, HS, & Qian, XS (2011). A mathematical modeling for the Lookback option with jump-di usion using binomial tree method. Journal of Computational and Applied Mathematics, 235(17), 5140{5154. https://doi.org/10.1016/j.cam.2011.05.002
[18] Leung, KS (2013). An analytic pricing formula for Lookback options under stochastic volatility. Applied Mathematics Letters, 26(1), 145{149. https://doi.org/10.1016/j.aml.2012.07.008
[19] Mandelbrot, BB (1997). Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. Springer-Verlag, New York. https://doi.org/10.1007/978-1-4757-2763-0 [20] Muller, UA, Dacorogna, MM, & Pictet, OV (1998). Heavy tails in highfrequency nancial data. A Practical Guide to Heavy Tails: Statistical Techniques and Applications, 55{78. https://dx.doi.org/10.2139/ssrn.939
[21] Park, SH, & Kim, JH (2013). A semi-analytic pricing formula for Lookback options under a general stochastic volatility model. Statistics and Probability Letters, 83(11), 2537{2543. https://doi.org/10.1016/j.spl.2013.08.002
[22] Podlubny, I. (1999). Fractional Di erential Equations. Academic Press.
[23] Rezaei, D., & Izadi, M. (2023). An analytical solution to time-space fractional Black-Scholes option pricing model. University Politehnica of Bucharest Scienti c Bulletin-Series A-Applied Mathematics and Physics, 85(1), 129{40.
[24] Rezaei, M., & Yazdanian, AR (2019). Numerical solution of the time-fractional Black-Scholes equation for European double barrier option with time-dependent parameters under the CEV model. Financial Engineering and Portfolio Management, 10(39), 339{369. https://dorl.net/dor/20.1001.1.22519165.1398.10.39.16.4 [In Persian]
[25] Rezaei, M., Yazdanian, AR, Ashra , A., & Mahmoudi, SM (2021). Numerical pricing based on fractional Black-Scholes equation with timedependent parameters under the CEV model: Double barrier options. Computers and Mathematics with Applications, 90, 104{111. https://doi.org/10.1016/j.camwa.2021.02.021
[26] Rezaei, M., Yazdanian, AR, Ashra , A., & Mahmoudi, SM (2022). Numerically pricing nonlinear time-fractional Black-Scholes equation with timedependent parameters under transaction costs. Computational Economics, 60(1), 243{280. https://doi.org/10.1007/s10614-021-10148-z
[27] Rezaei, M., Yazdanian, AR, Mahmoudi, SM, & Ashra , A. (2021). A compact di erence scheme for time-fractional Black-Scholes equation with time-dependent parameters under the CEV model: American options. Computational Methods for Di erential Equations, 9(2), 523{552. https://doi.org/10.22034/cmde.2020.36000.1623
[28] Shreve, S. (2004). Stochastic calculus for nance II, Continuous-Time Models. Springer Finance.
[29] Wang, XT, Wu, M., Zhou, ZM, & Jing, WS (2012). Pricing European option with transaction costs under the fractional long memory stochastic volatility model. Physica A, 391(4), 1469{1480. https://doi.org/10.1016/j.physa.2011.11.014
[30] Wong, HY, & Chan, CM (2007). Lookback options and dynamic fund protection under multiscale stochastic volatility. Insurance: Mathematics and Economics, 40(3), 357{385. https://doi.org/10.1016/j.insmatheco.2006.05.006 [31] Wyss, W. (2000). The fractional Black-Scholes equations. Fractional Calculus and Applied Analysis, 3(1), 51{61.
[32] Xiao, W., Zhang, W., Xu, W., & Zhang, X. (2012). The valuation of equity warrants in a fractional Brownian environment. Physica A, 391(4), 1742{1752. https://doi.org/10.1016/j.physa.2011.10.024
[33] Xiao, WL, Zhang, WG, Zhang, XL, & Wang, YL (2010). Pricing currency options in a fractional Brownian motion with jumps. Economic Modelling, 27(5), 935{942. https://doi.org/10.1016/j.econmod.2010.05.010
[34] Yang, Z. (2020). Default probability of American Lookback option in a mixed jump-di usion model. Physica A, 540, 123242. https://doi.org/10.1016/j.physa.2019.123242
[35] Zhang, Q., & Taksar, T. (2009). Analytical approximate solutions to American barrier and Lookback option values. Handbook of Numerical Analysis, Elsevier, 15, 665{684. https://doi.org/10.1016/S1570-8659(08)00017-3 | ||
آمار تعداد مشاهده مقاله: 179 تعداد دریافت فایل اصل مقاله: 193 |