
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,379,997 |
تعداد دریافت فایل اصل مقاله | 3,580,061 |
Generalized extropy of $k$-Records: properties and applications | ||
Journal of Mahani Mathematical Research | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 18 تیر 1404 اصل مقاله (620.42 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2025.24785.1761 | ||
نویسندگان | ||
Maryam Askari1؛ Fatemeh Yousefzadeh* 1؛ Sara Jomhoori2 | ||
1Department of Statistics, University of Birjand, Birjand, Iran | ||
2Department of Statistics, University of Birjand, Birjand, Iran | ||
چکیده | ||
In this paper, we introduce a generalized measure of extropy based on $k$-records and study its properties. We show that several existing extropies, such as survival, negative cumulative, past and weighted extropy are special cases of this generalized measure of extropy. We also propose a dynamic generalized measure of extropy based on $k$-records which includes residual extropy, dynamic survival extropy and weighted dynamic survival extropy. A generating function is discussed using this generalized extropy measure, using which we provide different extropy and entropy measures. Some important properties of generalized extropy of $k$-records and generating function are derived. We use simulation to assess the bias and mean squared error of the estimator of the generalized extropy and compute its values for real data. | ||
کلیدواژهها | ||
Generalized extropy؛ Generating function؛ Survival extropy؛ Weighted extropy | ||
مراجع | ||
[1] Ahsanullah, M. (1994). Record values, random record models and concomitants. Journal of Statistical Research, 28, 89-109. https://www.researchgate.net/publication/228454046 Records and Concomitants
[2] Arnold, BC., Balakrishnan, N., & Nagaraja, HN. (1992). A First Course in Order Statistics. John Wiley, New York. https://www.uaar.edu.pk/fs/books/25.pdf
[3] Bansal, S., & Gupta, N. (2020). Weighted extropies and past extropy of order statistics and k-record values. Communications in Statistics-Theory and Methods, 51, 6091-6108. https://doi.org/10.1080/03610926.2020.1853773
[4] Bhaumik, D.K. & Gibbons, R.D. (2006). One-sided approximate prediction intervals for at least p of m observations from a gamma population at each of r locations. Technometrics, 48, 112-119. https://doi.org/10.1198/004017005000000355
[5] Dziubdziela, W., & Kopocinski, B. (1976). Limiting properties of the k-th record values. Applicationes Mathematican, 15, 187-190. https://eudml.org/doc/263206
[6] Go man, C., & Pedrick, G. (1965). First Course in Functional Analysis. Prentice Hall, London.
[7] Gupta, N., Chaudhary, S.K., & Sahu, P.K. (2022). On weighted cumulative residual extropy and weighted negative cumulative extropy. https://doi.org/10.1080/02331888.2023.2241595
[8] Gupta, N., & Chaudhary, S.K. (2022). On General Weighted Extropy of Ranked Set Sampling. Communications in Statistics-Theory and Methods, 1-14. https://doi.org/10.1080/03610926.2023.2179888
[9] Jose, J., & Sathar, E. A. (2019). Residual extropy of k-record values. Statistics and Probability Letters, 146, 1-6. https://doi.org/10.1016/j.spl.2018.10.019
[10] Jose, J., & Sathar, E. A. (2020). Past extropy of k-records. Stochastics and Quality Control, 35, 25-38. https://doi.org/10.1515/eqc-2019-0023
[11] Jose, J., & Sathar, E. A. (2022). Symmetry being tested through simultaneous application of upper and lower k-records in extropy. Journal of Statistical Computation and Simulation, 92, 830-846. https://doi.org/10.1080/00949655.2021.1975283
[12] Krishnan, A. S., Sunoj, S. M., & Nair, N. U. (2020). Some reliability properties of extropy for residual and past lifetime random variables. Journal of the Korean Statistical Society, 49(2), 457-474. https://doi.org/10.1007/s42952-019-00023-x
[13] Kundu, C. (2021). On cumulative residual (past) extropy of extreme order statistics. Communications in Statistics-Theory and Methods, 52, 5848-5865. https://doi.org/10.1080/03610926.2021.2021238
[14] Lad, F. G. San lippo, and G. Agro. (2015). Extropy: Complementary dual of entropy. Statistical Science, 30(1), 40-58. https://doi.org/10.1214/14-STS430
[15] Lawless, J. F. (2011). Statistical models and methods for lifetime data. Wiley, Hoboken.
[16] Qiu, G., & Jia, K. (2018). The residual extropy of order statistics. Statistics and Probability Letters, 133, 15-22. https://doi.org/10.1016/j.spl.2017.09.014
[17] Rao, M., Chen, Y., Vemuri, B., & Wang, F. (2004). Cumulative residual entropy: A new measure of information. IEEE Transactions on Information Theory, 50, 1220{1228. https://doi.org/10.1109/TIT.2004.828057
[18] Sathar, E. A., & Nair R, D. (2021). A study on weighted dynamic survival and failure extropies. Communications in Statistics-Theory and Methods, 52, 623-642. https://doi.org/10.1080/03610926.2021.1919308
[19] Sathar, E. A., & Nair R, D. (2021). On dynamic survival extropy. Communications in Statistics-Theory and Methods, 50(6), 1295-1313. https://doi.org/10.1080/03610926.2019.1649426
[20] Sathar, E. A., & Nair, R. D. (2021). On dynamic weighted extropy. Journal of Computational and Applied Mathematics, 393, 113507. https://doi.org/10.1016/j.cam.2021.113507
[21] Shaked, M., & Shanthikumar, J. (2007). Stochastic orders. New York, Springer New York.
[22] Shanker, R., Hagos, F. & Sujatha, S. (2015). On the modelling of lifetimes data using exponential and Lindley distributions. Biometrics and Biostatistics International Journal, 2(5), 1-9. https://doi.org/10.15406/bbij.2016.03.00061
[23] Shannon, C.E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379{423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
[24] Tahmasebi, S., & Toomaj, A. (2021). On negative cumulative extropy with applications. Communications in Statistics-Theory and Methods, 51, 5025-5047. https://doi.org/10.1080/03610926.2020.1831541
[25] Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52, 479-487. https://doi.org/10.1007/BF01016429
[26] Vasicek, O. (1976). A test for normality based on sample entropy. Journal of the Royal Statistical Society: Series B (Methodological), 38, 54-59. https://doi.org/10.1111/j.2517-6161.1976.tb01566.x
[27] Yousaf, F., Ali, S., & Shah, I. (2019). Statistical inference for the Chen distribution based on upper record values. Annals of Data Science, 6, 831-851. https://doi.org/10.1007/s40745-019-00214-7 | ||
آمار تعداد مشاهده مقاله: 44 تعداد دریافت فایل اصل مقاله: 40 |