
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,380,005 |
تعداد دریافت فایل اصل مقاله | 3,580,083 |
On the annihilators of generalized local cohomology modules | ||
Journal of Mahani Mathematical Research | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 31 تیر 1404 اصل مقاله (451.34 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2025.24948.1774 | ||
نویسنده | ||
Shahram Rezaei* | ||
Department of Mathematics, Payame Noor University, Tehran, Iran | ||
چکیده | ||
Let ${\frak{a}}$ be an ideal of Noetherian ring $R$ and $M$, $N$ be two finitely generated $R$-modules. In this paper, we obtain some results about the annihilators of top generalized local cohomology modules. We define $T:=T_R(\frak{a},M, N)$ as the largest submodule of $N$ such that\\ $cd(\frak{a},M, T_R(\frak{a},M,N))<\operatorname{cd}(\frak{a},M,N)$. Let $(R,\frak{m})$ be a complete Gorenstein Noetherian local ring such that $pd(M)=d<\infty$, $dim\ N=dim\ R=n<\infty$ and $cd(\frak{a},M,N)=d+n$. We prove that if $Ass_R(Ext_R^d(M,N/T))\subseteq Ass_R R$, then $Ann_R(H_{\frak{m}}^{d+n}(M,N))\subseteq Ann_R Ext_R^d(M,N/T)$. | ||
کلیدواژهها | ||
Annihilator؛ local cohomology؛ generalized local cohomology | ||
مراجع | ||
[1] Amjadi, J., & Naghipour, R. (2008). Cohomological dimension of Generalized local cohomology modules, Algebra Colloq., 15, 303-308. https://doi.org/10.1142/S1005386708000278
[2] Atazadeh, A., Sedghi, M., & Naghipour, R. (2014). On the annihilators and attached primes of top local cohomology modules, Arch. der Math., 102, 225-236. https://doi.org/10.1007/S00013-014-0629-1
[3] Atazadeh, A., Sedghi, M., & Naghipour, R. (2015). Cohomological dimension ltration and annihilators of top local cohomology modules, Colloq. Math., 139, 25-35. https://doi.org/10.4064/cm139-1-2
[4] Bahmanpour, K. (2015). Annihilators of local cohomology modules, Comm. Algebra, 43, 2509-2515. https://doi.org/10.1080/00927872.2014.900687
[5] Bahmanpour, K., Azami, J., & Ghasemi, G. (2012). On the annihilators of local cohomology modules, J. Algebra, 363, 8-13. http://dx.doi.org/10.1016/j.jalgebra.2012.03.026
[6] Brodmann, M., & Sharp, R. Y. (1998). Local cohomology: an algebraic introduction with geometric applications, Cambridge Univ. Press, 60. https://doi.org/10.1017/CBO9780511629204
[7] Evans, E. G., & Gri th P. (1985). Syzygies, London Math. Soc. Lecture Note Ser. Vol 106 Cambridge Univ. Press. https://doi.org/10.1017/CBO9781107325661
[8] GU, Y., & Chu, L. (2009). Attached primes of the top generalized local cohomology modules, Bull. Aust. Math., 79, 59-67. https://doi.org/10.1017/S000497208000993
[9] Hasanzad, M., & A'zami, J. (2020). A short note on annihilators of local cohomology modules, J. Algebra and its Appl., 171, 61-67. https://doi.org/10.1142/S0219498820500267
[10] Herzog, J. (1974). Komplex Au osungen und Dualitat in der lokalen algebra, Universitut Regensburg.
[11] Lynch, L. R. (2012). Annihilators of top local cohomology, Comm. Algebra, 40, 542-551. https://doi.org/10.1080/00927872.2010.533223
[12] Matsumura, H. (1986). Commutative ring theory, Cambridge Univ. Press., https://doi.org/10.1017/CBO9781139171762
[13] Tri, N. M. (2020). Some results on top generalized local cohomology modules with respect to a system of ideals, Turk. J. Math., 44, 1673- 1686. https://doi.org/10.3906/mat-1910-19
[14] Yassemi, S. (1994). Generalized section functors, J. Pure. Appl. Algebra, 95, 103- 119. https://doi.org/10.1016/0022-4049(94)90121-X | ||
آمار تعداد مشاهده مقاله: 23 تعداد دریافت فایل اصل مقاله: 19 |