
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,564 |
تعداد مشاهده مقاله | 5,391,351 |
تعداد دریافت فایل اصل مقاله | 3,595,591 |
Generators and joint spectra for a special class of topological algebras | ||
Journal of Mahani Mathematical Research | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 14 مرداد 1404 اصل مقاله (495.97 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2025.24505.1732 | ||
نویسندگان | ||
Majid Sabet1؛ Ali Morovatpoor* 2 | ||
1Department of Mathematics, Faculty of Science, Payame Noor University (PNU), Tehran, Iran | ||
2Department of Basic Sciences, Faculty of Basic Sciences, Technical and Vocational University (TVU), Tehran, Iran | ||
چکیده | ||
Let $u$ be a generator for a commutative Banach algebra with unit. It is well known that the spectrum of $u$ is homeomorphic to the carrier of this algebra. In this paper, we extend this result for a broader class of complete metrizable topological algebras, particularly those satisfying the properties of fundamental strongly sequential(FSS) and linearly complete algebras. Specifically, we establish that the homeomorphism between the spectrum Sp(u) and the carrier space holds for FSS-algebras and linearly complete regular algebras. Thus, we generalize the classical result known for Banach algebras. Furthermore, by assuming that the boundedness radius $\beta$ is subadditive, we prove that the spectrum $Sp(u)$ is polynomially convex. This assumption also enables us to derive a more general result on the polynomial convexity of joint spectra in finitely generated algebras. To demonstrate the significance and nontrivial nature of these extensions, we provide illustrative examples that highlight how the introduced conditions substantially broaden the applicability of existing results. | ||
کلیدواژهها | ||
Strongly sequential algebras؛ Fundamental algebras؛ Boundedness radius؛ Carrier space؛ Joint generators | ||
مراجع | ||
1] Allan, G. R. (1965). A spectral theory for locally convex algebras. Proceeding of the London Mathematical Society, 115, 399-421. https://doi.org/10.1112/plms/s3-15.1.399
[2] Anjidani, E. (2014). On Gelfand{Mazur theorem on a class of F-algebrass. Topological Algebra and its Applications, 2, 19-23. http://doi.org/10.2478/taa-2014-0004
[3] Ansari{Piri, E. (1990). A class of factorable topological algebras. Proceeding of the Edinburgh Mathematical Society, 33, 53- 59. https://doi.org/10.1017/S001309150002887X
[4] Ansari-Piri, E. (2001). Topics on fundamental topological algebras. Honam Mathematical Journal, 23, 59-66.
[5] Ansari{Piri, E. (2004). Completion of fundamental topological vector spaces. Honam Mathematical Journal, 26, 77-83.
[6] Ansari-Piri, E. (2010). The linear functionals on fundamental locally multiplicative topological algebras. Turkish Journal of Mathematics, 34, 385-391. https://doi.org/10.3906/mat-0810-12
[7] Ansari{Piri, E., & Sabet, M. (2019). The numerical range of an element of a class of topological algebras. International Journal of Pure and Applied Mathematics. 41, 58-64.
[8] Ansari{Piri, E., Sabet, M., & Shari , S. (2016). A class of complete metrizable Q-algebras. Scienti c Studies and Research, Series Mathematics and Informatics. 26, 17-24.
[9] Ansari{Piri, E., Sabet, M., & Shari , S. (2016). Two famous concepts in F-algebras. General Mathematics Notes, 34, 1-6.
[10] Balachandran, V. K. (2000). Topological Algebras. North-Holland Mathematics Studies Publishing. 1st Edition, 185, Amsterdam.
[11] Bayoumi, A. (2003). Foundations of Complex Analysis non Locally Convex Spaces. JAI Press, 193, Elsevier.
[12] Bonsall, F. F., & Duncan, J. (1973). Complete Normed Algebras. Springer-Verlag, Berlin, Heidelberg, New York.
[13] El Kinani, A., Oubbi, L., & Oudadess, M. (1997). Spectral and boundedness radii in locally convex algebras. Georgian Mathematical Journal, 5, 233-241. https://doi.org/10.1023/B:GEOR.0000008122.00320.f9
[14] Fragoulopoulou, M. (2005). Topological Algebras with Involution. North-Holland Mathematics Studies Publishing, 1st Edition, 200, Amsterdam.
[15] Honary, T. G., & Naja Tavani, M. (2008). Upper semicontinuity of the spectrum function and automatic continuity in topological Q-algebras. Note di Mathematica, 28, 57-62. http://doi.org/10.1285/i15900932v28n2p57
[16] Husain, T. (1979). Infrasequential topological algebra. Canadian Mathematical Bulletin, 22, 413-418. https://doi.org/10.4153/CMB-1979-054-1
[17] Mallios, A. (1986). Topological Algebras, North-Holland Mathematics Studies Publishing. 1st Edition, 124, Amsterdam.
[18] Michael, E. A. (1952). Locally Multiplicatively Convex Topological Algebras. Memoirs of the American Mathematical Society, 11.
[19] Rudin, W. (1991). Functional Analysis. Mac Graw-Hill, New York.
[20] Sabet, M., & Sanati, R. G. (2020). Topological algebras with subadditive boundedness radius. CUBO-A Mathematical Journal, 22, 289-297. https://doi.org/10.4067/S0719-06462020000300289
[21] Zelazko, W. (1973). Banach Algebras. PWN-Polish Scienti c Publishers, Warszawa. | ||
آمار تعداد مشاهده مقاله: 7 تعداد دریافت فایل اصل مقاله: 7 |