
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,572 |
تعداد مشاهده مقاله | 5,420,651 |
تعداد دریافت فایل اصل مقاله | 3,608,760 |
Generalizations of Mana's iterative algorithm for best proximity points | ||
Journal of Mahani Mathematical Research | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 22 مرداد 1404 اصل مقاله (487.46 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2025.24603.1743 | ||
نویسندگان | ||
Mohammad Reza Haddadi* ؛ Marjan Aliyari | ||
Department of Mathematices, Ayatollah Boroujerdi University, Boroujerd, Iran | ||
چکیده | ||
The main purpose of this paper is to consider the convergence of iterative algorithms for finding best proximity points for cyclic contractive mappings that is a new extension of the Mann iteration by dropping some additional assumptions. To this end, the convergence behavior of the new algorithms is compared with a numerical example. | ||
کلیدواژهها | ||
Best proximity point؛ Cyclic relatively nonexpansive؛ Mann iteration Iterative algorithm | ||
مراجع | ||
[1] Aliyari, M., Gabeleh, M., & Karapinar,E.(2021). Mann and Ishikawa iterative processes for cyclic relatively nonexpansive mappings in uniformly convex Banach spaces Journal Nonlinear Convex Analysis, 22, 699{713. http://hdl.handle.net/20.500.12416/5633
[2] Browder, FE,(1965). Nonexpansive nonlinear operators in a Banach space, Proceedings of the National Academy of Sciences. USA, 54, 1041-1044. https://doi.org/10.1073/pnas.54.4.1041
[3] Eldred, AA, & Veeramani, P. (2006). Existence and convergence of best proximity points. Journal of Mathematical Analysis and Applications, 323(2), 1001-1006. https://doi.org/10.1016/j.jmaa.2005.10.081
[4] Fan, K.(1969). Extensions of two xed point theorems of F. E. Browder. Math. Z, 112 234-240. https://doi.org/10.1007/BF01110225
[5] Haddadi, MR, (2014). Best proximity point iteration for nonexpansive mapping in Banach spaces. J. Nonlinear Sci. Appl, 7(2), 126{130. http://dx.doi.org/10.22436/jnsa.007.02.06
[6] Haddadi, MR, Farajzadeh, A., & Wang, Y. (2024). New iterations of the best proximity point with convergence rates. J. Nonlinear Convex Anal, 25(2), 317-329. https://doi.org/10.21203/rs.3.rs-2416518/v1
[7] Haddadi, MR, Mursaleen, M.,& Parvaneh, V.(2024). Generalization of simulation functions for nding best proximity pair, best proximity point and best proximity coincidence point. Filomat, 38(8), 2847{2856. https://doi.org/10.2298/FIL2408847P
[8] Haddadi, MR, Parvaneh, V., & Moursalian, M.(2021). Global optimal approximate solutions of best proximity points. Filomat, 35(5), 159-167. https://doi.org/10.2298/FIL2105555H
[9] Hiranmoy, G., Karapnar, E., & Kanta Dey, L. (2021). Best proximity point results for contractive and cyclic contractive type mappings, Numer. Funct. Anal. Optim, 42(7), 849-864. https://doi.org/10.1080/01630563.2021.1933518
[10] Jain, SK, Meena, G., Singh, D., & Maitra, JK. (2022). Best proximity point results with their consequences and applications. J. Inequal. Appl, 73, 16pp. https://doi.org/10.1186/s13660-022-02807-y
[11] Mann, W.R. (1953). Mean value methods in iteration, Proc. Amer. Math. Soc., 4, 506-510.
[12] Pitea, A., & Stanciu, M. (2023). Best proximity for proximal operators on b-metric spaces. Turk. J. Math. 47, 1873-1886. https://doi.org/10.55730/ 1300-0098.3469
[13] Sadiq Basha, S., Shahzad, N., & Sethukumarasamy, K.(2022). Relative continuity, proximal boundedness and best proximity point theorems. Numer. Funct. Anal. Optim., 43(4), 394-411. https://doi.org/10.1080/01630563.2022.2041659
[14] Sharma, Sh, & Chandok, S. (2024). Split xed point problems for quasi-nonexpansive mappings in Hilbert spaces. U.P.B. Sci. Bull., Series A, 86(1), 109-118. https://www.scienti cbulletin.upb.ro/rev docs arhiva/full9d8 835258.pdf
[15] Suparatulatorn, R., Cholamjiak, W., & Suantai, S.(2020). Existence and convergence theorems for global minimization of best proximity points in Hilbert spaces. Acta Appl. Math, 165, 81-90. https://doi.org/10.1007/s10440-019-00242-8
[16] Suparatulatorn, R. & Suantai, S.(2019). A new hybrid algorithm for global minimization of best proximity points in Hilbert spaces. Carp. J. Math. 35, 95-102. https://doi.org/10.37193/CJM.2019.01.11
[17] Xu, HK,(2003). An iterative approach to quadratic optimization. J. Optim. Theory Appl, 116 659-678. https://doi.org/10.1023/A:1023073621589 | ||
آمار تعداد مشاهده مقاله: 3 تعداد دریافت فایل اصل مقاله: 7 |