
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,579 |
تعداد مشاهده مقاله | 5,427,171 |
تعداد دریافت فایل اصل مقاله | 3,611,728 |
A note on sensitivity and chaos on hyperspaces of uniform spaces | ||
Journal of Mahani Mathematical Research | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 24 مرداد 1404 اصل مقاله (495.07 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2025.24576.1740 | ||
نویسندگان | ||
Nooshin Darban Maghami؛ Seyyed Alireza Ahmadi* ؛ Zahra Shabani | ||
Department of Mathematics, Faculty of Mathematics, Statistics and Computer Science, University of Sistan and Baluchestan, Zahedan, Iran. | ||
چکیده | ||
In this paper, we examine the dynamical characteristics of actions on the set of compact subsets within the phase space. Specifically, if $X$ is identified as a uniform space, we denote $\mathscr{K}(X)$ as the collection of non-empty closed subsets of $X$ equipped with the Hausdorff topology. If $f$ represents a continuous self-map on $X$, there exist several naturally induced continuous self-maps on $\mathscr{K}(X)$. The principal focus of our investigation is the relationship between the dynamics of $f$ and these induced mappings. For this purpose, we present topological notions of sensitivity and mixing properties pertinent to dynamical systems derived from uniform hyperspaces. | ||
کلیدواژهها | ||
sensitivity؛ transitivity؛ distal؛ hyperspaces؛ uniform space | ||
مراجع | ||
[1] Ahmadi, S. A., Wu,X. & Chen, G. (2020) Topological chain and shadowing properties of dynamical systems on uniform spaces. Topology Appl., 275, 107153 (11 pages).
[2] Akin, E., Auslander, J. & Nagar, A. (2017), Dynamics of induced systems. Ergodic Theory Dynam. Systems 37, no. 7, 2034{2059.
[3] Bauer, W. & Sigmund, K. (1975). Topological dynamics of transformations induced on the space of probability measures. Monatsh. Math. 79, 81{92.
[4] Darban Maghami, N., Ahmadi, S.A. & Shabani, Z. (2025). Strong chain transitivity in hyperspaces of uniform spaces, Appl. Gen. Topol. doi:10.4995/agt.2025.21100.
[5] Das, T., Lee,K., Richeson, D. & Wiseman, J. (2013). Spectral decomposition for topologically anosov homeomorphisms on noncompact and non-metrizable spaces. Topology Appl., 160, no. 1, 149{158.
[6] Fernandez, L., Good, C., Puljiz, M., & Ramrez, A. (2015). Chain transitivity in hyperspaces. Chaos Solitons Fractals 81 part A, 83{90.
[7] Kelley, J. L. General topology. Springer-Verlag, New York-Berlin, 1975.
[8] Pirfalak,F., Ahmadi,S. A., Wu, X., & Kouhestani, N. (2021). Topological Average Shadowing Property on Uniform Spaces. Qual. Theory Dyn. Syst., 20(2), no. 31 (15 pages).
[9] Salman, M., Wu, X., & Das, R. (2021). Sensitivity of nonautonomous dynamical systems on uniform spaces. International Journal of Bifurcation and Chaos, 31, no. 1, 2150017 (11 pages).
[10] Wang, Y., Wei, G. & Campbell, William H. (2009). Sensitive dependence on initial conditions between dynamical systems and their induced hyperspace dynamical systems. Topology Appl. 156, no. 4, 803{811.
[11] Wu,X., Liang, S., Ma, X., Lu, T. & Ahmadi, S. A. (2020). The mean sensitivity and mean equicontinuity in uniform spaces. Int. J. Bifurcation and Chaos, 2050122 (11 pages). | ||
آمار تعداد مشاهده مقاله: 5 تعداد دریافت فایل اصل مقاله: 4 |