
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,581 |
تعداد مشاهده مقاله | 5,428,912 |
تعداد دریافت فایل اصل مقاله | 3,614,160 |
On new generalized closure operator in the frame of ideals | ||
Journal of Mahani Mathematical Research | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 25 مرداد 1404 اصل مقاله (498.04 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2025.25028.1783 | ||
نویسندگان | ||
Salah El-Din Abbas1؛ Hossam Mahmoud Khiamy* 1؛ El-Sayed El-Sanowsy1؛ Ismail Ibedou2 | ||
1Mathematics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt | ||
2Mathematics Department, Faculty of Science, Benha University, Benha 13518, Egypt | ||
چکیده | ||
This paper aims to propose and examine two new operators based on the fundamental structure “ideal” and the notion of “generalized” producing a new generalized ideal topological space. The produced generalized space is finer than the original spaces. Also, the introduced structures are explained in detail in terms of topological basic theories and some properties. Moreover, we obtain some results for the produced generalized ideal topological space. Further, we provide several essential results related to these new frameworks. We also provide some examples to further illustrate our discussions and related findings. | ||
کلیدواژهها | ||
ideal؛ $(\cdot)^{\bullet}$-operator؛ $\overrightarrow{\sum }$-operator؛ generalized topology | ||
مراجع | ||
1] Abbas, S. E., El-Sanowsy, S., & Khiamy, H. M. (2023). Certain approximation spaces using local functions via idealization. Sohag J. Sci., 8(3), 311{321. https://doi.org/10.21608/sjsci.2023.201184.1072.
[2] Abbas, S. E., Khiamy, H.M., EL-Sanowsy, E., & Ibedou, I. (2025). New generalized closure operators induced by local functions via ideals, J. Mahani Math. Res., 14(2), 221-244. https://doi.org/10.22103/jmmr.2025.24116.1703.
[3] Acharjee, S, Ozkoc, M., & Issaka, F. Y. (2025). Primal topological spaces. Bol. Soc. Parana. Mat., 43, 1-9. https://doi.org/10.5269/bspm.66792.
[4] Al-Zoubi, K. Y., & Al-Nashef, B. (2003). The topology of !-open subsets. Al-Manarah J., 9, 169{179
[5] Arenas, G., Dontchev, J., & Puertas, M. L. (2000). Idealization of some weak se aration axioms, Acta Math. Hungar., 89, 47{53.
[6] Choquet, G. (1947). Sur les notions de lter et grille. Comptes Rendus Acad. Sci. Paris, 224, 171-173.
[7] Csaszar, A. (2002). Generalized topology, generalized continuity. Acta Math. Hungar., 96, 351-357.
[8] Csaszar, A. (2004). Separation axioms for generalized topologies. Acta Math. Hungar., 104, 63-69.
[9] Ekici, E. (2011). On I-Alexandro and Ig-Alexandro ideal topological spaces. Filomat, 25(4), 99{108.
[10] Hatr, E. (2013). On decompositions of continuity and complete continuity in ideal topological spaces. Eur. J. Pure Appl. Math., 6(3), 352{362.
[11] Hayashi, E. (1964). Topologies de ned by local properties. Math. Ann., 156, 205-215.
[12] Hdeib, H. Z. (1982). !-closed mappings. Rev. Colombiana Mat. 16, 65{78.
[13] Jankovic, D., & T. R. Hamlett, T.R. (1990). New topologies from old via ideals. Amer. Math. Monthly, 97(4), 295-310. https://doi.org/10.1080/00029890.1990.11995593.
[14] Kuratowski, K. (1933). Topologie I, Warszawa.
[15] Modak, S. (2013). Topology on grill- lter space and continuity, Bol. Soc. Paran. Mat., 31(2), 219-230.
[16] Modak, S. (2013). Grill- lter space, J. Indian Math. 80(3-4), 313-320.
[17] Njastad, O. (1966). Remarks on topologies de ned by local properties. Avh. Norske Vid.-Akad. Oslo I (N.S.), 8, 1-16.
[18] Samuel, P. (1975). A topology formed from a given topology and ideal, J. Lond. Math. Soc., 10, 409-416.
[19] Stone, M. H. (1937). Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41, 375-481. https://doi.org/10.2307/1989788.
[20] Tyagi, B. K., & Chauhan, H. V. S. (2016). On generalized closed sets in generalized topological spaces. Cubo, 18, 27{45. https://doi.org/10.4067/S0719-06462016000100003.
[21] Vaidyanathaswamy, R. (1945). The localization theory in set topology, Proc. Indian Acad. Sci. Math. Sci., 51{61.
[22] Velicko, N.V. (1996). H-closed topological spaces. Amer. Math. Soc. Transl, 78, 103{118.
| ||
آمار تعداد مشاهده مقاله: 4 تعداد دریافت فایل اصل مقاله: 4 |