
تعداد نشریات | 26 |
تعداد شمارهها | 448 |
تعداد مقالات | 4,586 |
تعداد مشاهده مقاله | 5,438,684 |
تعداد دریافت فایل اصل مقاله | 3,619,121 |
Comparison of Lasso and Whisker topologies on fundamental groupoids and local triviality | ||
Journal of Mahani Mathematical Research | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 28 مرداد 1404 اصل مقاله (446.08 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmr.2025.24987.1776 | ||
نویسنده | ||
Ali Pakdaman* | ||
Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan, Iran | ||
چکیده | ||
This paper is devoted to comparing the Lasso topology and the Whisker topology on the fundamental groupoid. We prove that for locally path connected and semilocally simply connected spaces, the two topologies coincide. However, the converse does not hold in general, and we provide a partial converse. Furthermore, we observe that the topological fundamental groupoid is not étale, and we show that the topological fundamental groupoids of locally path connected and semilocally simply connected spaces, equipped with these topologies, are locally trivial. Through several examples, we illustrate the necessity of these conditions | ||
کلیدواژهها | ||
Topological fundamental groupoid؛ Locally trivial groupoid؛ Lasso topology؛ Whisker topology | ||
مراجع | ||
[1] Brown, R. (2006). Topology and Groupoids. Deganwy, United Kingdom: BookSurge LLC.
[2] Brown, R. (1987). From groups to groupoids: A brief survey. Bulletin of the London Mathematical Society, 19, 113{134. https://doi.org/10.1112/blms/19.2.113
[3] Brown, R., & Danesh-Naruie, G. (1975). Topological Fundamental Groupoid as topological Groupoid. Proc. Edinburgh Math. Soc., 19, 237{244. https://doi.org/10.1017/s0013091500015509
[4] Brodskiy, N., Dydac, J., Labuz, B., & Mitra, A. (2012). Covering maps for locally path-connected spaces, Fundamenta Mathematicae, 218, 13{46. https://doi.org/10.4064/fm218-1-2
[5] Brodskiy, N., Dydac, J., Labuz, B., & Mitra, A. Topological and uniform structures on universal covering spaces, arXiv:1206.0071.
[6] Ehresmann, C. (1959). Categories topologiques et categories di erentiables, Colloque Geom. Di . Globale, (Bruxelles, 1958), Centre Belge Rech. Math., Louvain, 137{150 (French).
[7] Fischer, H., Repovs, D., Virk, Z., & Zastrow, A. (2011). On semilocally simply connected spaces, Topology and its Applications, 158, 397{408. https://doi.org/10.1016/j.topol.2010.11.017
[8] Higgins, P. J. (1971). Categories and groupoids. Van Nostrand Reinhold.
[9] Holkar R. D., & Hossain, MD. A. Topological fundamental groupoid. I., arXiv:2302.01583.
[10] MacKenzie, K., (1987). Lie Groupoids and Lie Algebroids in Di erential Geometry, London Mathematical Society Lecture Note Series, 124.
[11] Moerdijk, I., & Mrcun, J. (2003). Introduction to foliations and Lie groupoids. Cambridge University Press.
[12] Pakdaman, A., & Shahini, F. (2021). The fundamental groupoid as a topological groupoid: Lasso topology, Topology and its applications, 302, 107837. https://doi.org/10.1016/j.topol.2021.107838
[13] Pakdaman, A., & Shahini, F. (2023). Fundamental groupoid and whisker topology, Mathematical researches, 9, 55{71.
[14] Pakdaman, A., & Shahini, F. (2023). Topological fundamental groupoids: Brown`s topology, Hacettepe Journal of mathematics and statistics, 52, 896{906. https://doi.org/10.15672/hujms.1205441
[15] Pashaei, S. Z., Mashayekhy, B., Torabi, H., & Abdullahi Rashid, M. (2019). On strong small loop transfer spaces relative to subgroups of fundamental groups, Topology and its applications, 254, 117{131. https://doi.org/10.1016/j.topol.2018.12.006
[16] Spanier, H. ( 1966). Algebraic Topology, McGraw-Hill Book Co, New York-Toronto, Ont.-London.
[17] Virk, Z. (2010). Small loop spaces, Topology and its Applications, 157, 451{455. https://doi.org/10.1016/j.topol.2009.10.003
[18] Virk, Z., & Zastrow, A. (2014). The comparison of topologies related to various concepts of generalized covering spaces, Topology and its Applications, 170, 52{62. https://doi.org/10.1016/j.topol.2014.03.011
[19] Virk, Z., & Zastrow, A. (2017). A new topology on the universal path space, Topology and its Applications, 231, 186{196. https://doi.org/10.1016/j.topol.2017.09.015 | ||
آمار تعداد مشاهده مقاله: 6 تعداد دریافت فایل اصل مقاله: 6 |